神经模糊控制系统的实现

Sergey M. Morozov
{"title":"神经模糊控制系统的实现","authors":"Sergey M. Morozov","doi":"10.1109/CTS53513.2021.9562822","DOIUrl":null,"url":null,"abstract":"Neuro-fuzzy approach for implementing control systems is considered. Neuro-fuzzy systems are a tool for a development of trainable control systems with high interpretability. These systems can be trained to work in new conditions. There is a possibility to analyze the actions, which implement the control. Examples of neuro-fuzzy control applications are presented: virtual assistant and automatic calibration system.","PeriodicalId":371882,"journal":{"name":"2021 IV International Conference on Control in Technical Systems (CTS)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Neuro-fuzzy Control Systems\",\"authors\":\"Sergey M. Morozov\",\"doi\":\"10.1109/CTS53513.2021.9562822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuro-fuzzy approach for implementing control systems is considered. Neuro-fuzzy systems are a tool for a development of trainable control systems with high interpretability. These systems can be trained to work in new conditions. There is a possibility to analyze the actions, which implement the control. Examples of neuro-fuzzy control applications are presented: virtual assistant and automatic calibration system.\",\"PeriodicalId\":371882,\"journal\":{\"name\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IV International Conference on Control in Technical Systems (CTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS53513.2021.9562822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IV International Conference on Control in Technical Systems (CTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS53513.2021.9562822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了神经模糊控制系统的实现方法。神经模糊系统是开发具有高可解释性的可训练控制系统的工具。这些系统可以经过训练,在新的条件下工作。有可能分析实现控制的操作。给出了神经模糊控制的应用实例:虚拟助手和自动标定系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Neuro-fuzzy Control Systems
Neuro-fuzzy approach for implementing control systems is considered. Neuro-fuzzy systems are a tool for a development of trainable control systems with high interpretability. These systems can be trained to work in new conditions. There is a possibility to analyze the actions, which implement the control. Examples of neuro-fuzzy control applications are presented: virtual assistant and automatic calibration system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信