资源敏感的预算信息最大化

Rithic Kumar N, Y. Gupta, Sanatan Sukhija
{"title":"资源敏感的预算信息最大化","authors":"Rithic Kumar N, Y. Gupta, Sanatan Sukhija","doi":"10.1109/ASONAM55673.2022.10068591","DOIUrl":null,"url":null,"abstract":"The paper proposes a more general framework for budgeted influence maximization. We propose a novel cost function that considers the potential seed nodes' properties and the firm interested in maximizing the influence. A greedy algorithm, maximizing the influence to cost ratio, is then used to select a balanced set of seed nodes. We also show that the edge weights play an important role in determining the influential power of nodes. Further, the edge weights for a network can be efficiently predicted with the help of link prediction heuristics like resource allocation metrics and the Adamic-Adar index.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source Aware Budgeted Information Maximization\",\"authors\":\"Rithic Kumar N, Y. Gupta, Sanatan Sukhija\",\"doi\":\"10.1109/ASONAM55673.2022.10068591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a more general framework for budgeted influence maximization. We propose a novel cost function that considers the potential seed nodes' properties and the firm interested in maximizing the influence. A greedy algorithm, maximizing the influence to cost ratio, is then used to select a balanced set of seed nodes. We also show that the edge weights play an important role in determining the influential power of nodes. Further, the edge weights for a network can be efficiently predicted with the help of link prediction heuristics like resource allocation metrics and the Adamic-Adar index.\",\"PeriodicalId\":423113,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM55673.2022.10068591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个更一般的预算影响最大化框架。我们提出了一个新的成本函数,它考虑了潜在种子节点的属性和对影响最大化感兴趣的公司。然后使用贪心算法,最大化对成本比的影响,选择一组平衡的种子节点。我们还证明了边权在确定节点的影响力方面起着重要作用。此外,借助资源分配指标和adam - adar指数等链路预测启发式方法,可以有效地预测网络的边权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source Aware Budgeted Information Maximization
The paper proposes a more general framework for budgeted influence maximization. We propose a novel cost function that considers the potential seed nodes' properties and the firm interested in maximizing the influence. A greedy algorithm, maximizing the influence to cost ratio, is then used to select a balanced set of seed nodes. We also show that the edge weights play an important role in determining the influential power of nodes. Further, the edge weights for a network can be efficiently predicted with the help of link prediction heuristics like resource allocation metrics and the Adamic-Adar index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信