基于学习的超分辨率训练数据库充分性分析

I. Bégin, F. Ferrie
{"title":"基于学习的超分辨率训练数据库充分性分析","authors":"I. Bégin, F. Ferrie","doi":"10.1109/CRV.2007.65","DOIUrl":null,"url":null,"abstract":"This paper explores the possibility of assessing the adequacy of a training database to be used in a learning-based super-resolution process. The Mean Euclidean Distance (MED) function is obtained by averaging the distance between each input patch and its closest candidate in the training database, for a series of blurring kernels used to construct the low-resolution database. The shape of that function is thought to indicate the level of adequacy of the database, thus indicating to the user the potential of success of a learning-based super-resolution algorithm using this database.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Training Database Adequacy Analysis for Learning-Based Super-Resolution\",\"authors\":\"I. Bégin, F. Ferrie\",\"doi\":\"10.1109/CRV.2007.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the possibility of assessing the adequacy of a training database to be used in a learning-based super-resolution process. The Mean Euclidean Distance (MED) function is obtained by averaging the distance between each input patch and its closest candidate in the training database, for a series of blurring kernels used to construct the low-resolution database. The shape of that function is thought to indicate the level of adequacy of the database, thus indicating to the user the potential of success of a learning-based super-resolution algorithm using this database.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了在基于学习的超分辨率过程中评估训练数据库的充分性的可能性。平均欧氏距离(MED)函数是通过对用于构建低分辨率数据库的一系列模糊核的每个输入patch与训练数据库中最接近的候选patch之间的距离取平均值来获得的。该函数的形状被认为表明数据库的充分性水平,从而向用户表明使用该数据库的基于学习的超分辨率算法的成功潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Database Adequacy Analysis for Learning-Based Super-Resolution
This paper explores the possibility of assessing the adequacy of a training database to be used in a learning-based super-resolution process. The Mean Euclidean Distance (MED) function is obtained by averaging the distance between each input patch and its closest candidate in the training database, for a series of blurring kernels used to construct the low-resolution database. The shape of that function is thought to indicate the level of adequacy of the database, thus indicating to the user the potential of success of a learning-based super-resolution algorithm using this database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信