{"title":"基于学习的超分辨率训练数据库充分性分析","authors":"I. Bégin, F. Ferrie","doi":"10.1109/CRV.2007.65","DOIUrl":null,"url":null,"abstract":"This paper explores the possibility of assessing the adequacy of a training database to be used in a learning-based super-resolution process. The Mean Euclidean Distance (MED) function is obtained by averaging the distance between each input patch and its closest candidate in the training database, for a series of blurring kernels used to construct the low-resolution database. The shape of that function is thought to indicate the level of adequacy of the database, thus indicating to the user the potential of success of a learning-based super-resolution algorithm using this database.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Training Database Adequacy Analysis for Learning-Based Super-Resolution\",\"authors\":\"I. Bégin, F. Ferrie\",\"doi\":\"10.1109/CRV.2007.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the possibility of assessing the adequacy of a training database to be used in a learning-based super-resolution process. The Mean Euclidean Distance (MED) function is obtained by averaging the distance between each input patch and its closest candidate in the training database, for a series of blurring kernels used to construct the low-resolution database. The shape of that function is thought to indicate the level of adequacy of the database, thus indicating to the user the potential of success of a learning-based super-resolution algorithm using this database.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Training Database Adequacy Analysis for Learning-Based Super-Resolution
This paper explores the possibility of assessing the adequacy of a training database to be used in a learning-based super-resolution process. The Mean Euclidean Distance (MED) function is obtained by averaging the distance between each input patch and its closest candidate in the training database, for a series of blurring kernels used to construct the low-resolution database. The shape of that function is thought to indicate the level of adequacy of the database, thus indicating to the user the potential of success of a learning-based super-resolution algorithm using this database.