在Fuchsian轨迹处压力度量的测地线坐标

X. Dai
{"title":"在Fuchsian轨迹处压力度量的测地线坐标","authors":"X. Dai","doi":"10.2140/gt.2023.27.1391","DOIUrl":null,"url":null,"abstract":"We prove that the Hitchin parametrization provides geodesic coordinates at the Fuchsian locus for the pressure metric in the Hitchin component $\\mathcal{H}_{3}(S)$ of surface group representations into $PSL(3,\\mathbb{R})$. \nThe proof consists of the following elements: we compute first derivatives of the pressure metric using the thermodynamic formalism. We invoke a gauge-theoretic formula to compute first and second variations of reparametrization functions by studying flat connections from Hitchin's equations and their parallel transports. We then extend these expressions of integrals over closed geodesics to integrals over the two-dimensional surface. Symmetries of the Liouville measure then provide cancellations, which show that the first derivatives of the pressure metric tensors vanish at the Fuchsian locus.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geodesic coordinates for the pressure metric at the Fuchsian locus\",\"authors\":\"X. Dai\",\"doi\":\"10.2140/gt.2023.27.1391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Hitchin parametrization provides geodesic coordinates at the Fuchsian locus for the pressure metric in the Hitchin component $\\\\mathcal{H}_{3}(S)$ of surface group representations into $PSL(3,\\\\mathbb{R})$. \\nThe proof consists of the following elements: we compute first derivatives of the pressure metric using the thermodynamic formalism. We invoke a gauge-theoretic formula to compute first and second variations of reparametrization functions by studying flat connections from Hitchin's equations and their parallel transports. We then extend these expressions of integrals over closed geodesics to integrals over the two-dimensional surface. Symmetries of the Liouville measure then provide cancellations, which show that the first derivatives of the pressure metric tensors vanish at the Fuchsian locus.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.1391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了Hitchin参数化为表面群表示$PSL(3,\mathbb{R})$的Hitchin分量$\mathcal{H}_{3}(S)$中的压力度量提供了Fuchsian轨迹处的测地线坐标。证明包括以下内容:我们使用热力学形式计算压力度规的一阶导数。通过研究Hitchin方程中的平连接及其平行输运,我们引入了一个规范理论公式来计算再参数化函数的一、二次变分。然后我们将这些封闭测地线上的积分表达式推广到二维曲面上的积分。然后,刘维尔测度的对称性提供了消去,这表明压力度规张量的一阶导数在Fuchsian轨迹处消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic coordinates for the pressure metric at the Fuchsian locus
We prove that the Hitchin parametrization provides geodesic coordinates at the Fuchsian locus for the pressure metric in the Hitchin component $\mathcal{H}_{3}(S)$ of surface group representations into $PSL(3,\mathbb{R})$. The proof consists of the following elements: we compute first derivatives of the pressure metric using the thermodynamic formalism. We invoke a gauge-theoretic formula to compute first and second variations of reparametrization functions by studying flat connections from Hitchin's equations and their parallel transports. We then extend these expressions of integrals over closed geodesics to integrals over the two-dimensional surface. Symmetries of the Liouville measure then provide cancellations, which show that the first derivatives of the pressure metric tensors vanish at the Fuchsian locus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信