拉马努金图的更好展开

N. Kahalé
{"title":"拉马努金图的更好展开","authors":"N. Kahalé","doi":"10.1109/SFCS.1991.185397","DOIUrl":null,"url":null,"abstract":"The expansion properties of regular graphs are investigated. The best previously known expansion of subsets of linear size of explicit k-regular graphs is k/4. This bound is achieved by nonbipartite Ramanujan graphs of degree k=p+1, which have the property that all but the largest eigenvalue have absolute value at most 2 square root p. The expansion coefficient for linear subsets for nonbipartite Ramanujan graphs is improved to 3(k-2)/8. Other results are established, including improved results about random walks on expanders.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Better expansion for Ramanujan graphs\",\"authors\":\"N. Kahalé\",\"doi\":\"10.1109/SFCS.1991.185397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expansion properties of regular graphs are investigated. The best previously known expansion of subsets of linear size of explicit k-regular graphs is k/4. This bound is achieved by nonbipartite Ramanujan graphs of degree k=p+1, which have the property that all but the largest eigenvalue have absolute value at most 2 square root p. The expansion coefficient for linear subsets for nonbipartite Ramanujan graphs is improved to 3(k-2)/8. Other results are established, including improved results about random walks on expanders.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

研究正则图的展开性质。关于显式k正则图的线性大小的子集的最好的已知展开是k/4。该界是由k=p+1阶的非二部Ramanujan图实现的,该图具有除最大特征值以外的所有特征值的绝对值不超过2根号p的性质。将非二部Ramanujan图的线性子集的展开系数提高到3(k-2)/8。建立了其他结果,包括扩展器上随机漫步的改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Better expansion for Ramanujan graphs
The expansion properties of regular graphs are investigated. The best previously known expansion of subsets of linear size of explicit k-regular graphs is k/4. This bound is achieved by nonbipartite Ramanujan graphs of degree k=p+1, which have the property that all but the largest eigenvalue have absolute value at most 2 square root p. The expansion coefficient for linear subsets for nonbipartite Ramanujan graphs is improved to 3(k-2)/8. Other results are established, including improved results about random walks on expanders.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信