博尔赫斯意义下最优正交规则集的构造

A. Jovanovic, M. Stanić, Tatjana V. Tomovic
{"title":"博尔赫斯意义下最优正交规则集的构造","authors":"A. Jovanovic, M. Stanić, Tatjana V. Tomovic","doi":"10.1553/ETNA_VOL50S164","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper we give a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges [Numer. Math., 67 (1994), pp. 271–288] for definite integrals with the same integrand and interval of integration but with different weight functions related to an arbitrary multi-index. We present a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges for four weight functions and explain how to perform an analogous construction for an arbitrary number of weight functions.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of the optimal set of quadrature rules in the sense of Borges\",\"authors\":\"A. Jovanovic, M. Stanić, Tatjana V. Tomovic\",\"doi\":\"10.1553/ETNA_VOL50S164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper we give a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges [Numer. Math., 67 (1994), pp. 271–288] for definite integrals with the same integrand and interval of integration but with different weight functions related to an arbitrary multi-index. We present a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges for four weight functions and explain how to perform an analogous construction for an arbitrary number of weight functions.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/ETNA_VOL50S164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL50S164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文给出了在博尔赫斯数意义上构造最优正交规则集的一种数值方法。数学。对于具有相同被积和积分区间但与任意多指标相关的不同权函数的定积分,[j], 67 (1994), pp. 271-288]。本文给出了一种构造四个权函数在博尔赫斯意义上的最优正交规则集的数值方法,并解释了如何对任意数量的权函数进行类似的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of the optimal set of quadrature rules in the sense of Borges
Abstract. In this paper we give a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges [Numer. Math., 67 (1994), pp. 271–288] for definite integrals with the same integrand and interval of integration but with different weight functions related to an arbitrary multi-index. We present a numerical method for the construction of an optimal set of quadrature rules in the sense of Borges for four weight functions and explain how to perform an analogous construction for an arbitrary number of weight functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信