基于时空自适应局部学习模型的内部预测

Hao Chen, R. Hu, Zhongyuan Wang, Rui Zhong
{"title":"基于时空自适应局部学习模型的内部预测","authors":"Hao Chen, R. Hu, Zhongyuan Wang, Rui Zhong","doi":"10.1109/PCS.2010.5702459","DOIUrl":null,"url":null,"abstract":"Inter prediction based on block matching motion estimation is important for video coding. But this method suffers from the additional overhead in data rate representing the motion information that needs to be transmitted to the decoder. To solve this problem, we present an improved implicit motion information inter prediction algorithm for P slice in H.264/AVC based on the spatio-temporal adaptive localized learning (STALL) model. According to 4 × 4 block transform structure in H.264/AVC, we first adaptively choose nine spatial neighbors and nine temporal neighbors, and a localized 3D casual cube is designed as training window. By using these information, the model parameters could be adaptively computed based on the Least Square Prediction (LSP) method. Finally, we add a new inter prediction mode into H.264/AVC standard for P slice. The experimental results show that our algorithm improves encoding efficiency compared with H.264/AVC standard, with relatively increases in complexity.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter prediction based on spatio-temporal adaptive localized learning model\",\"authors\":\"Hao Chen, R. Hu, Zhongyuan Wang, Rui Zhong\",\"doi\":\"10.1109/PCS.2010.5702459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter prediction based on block matching motion estimation is important for video coding. But this method suffers from the additional overhead in data rate representing the motion information that needs to be transmitted to the decoder. To solve this problem, we present an improved implicit motion information inter prediction algorithm for P slice in H.264/AVC based on the spatio-temporal adaptive localized learning (STALL) model. According to 4 × 4 block transform structure in H.264/AVC, we first adaptively choose nine spatial neighbors and nine temporal neighbors, and a localized 3D casual cube is designed as training window. By using these information, the model parameters could be adaptively computed based on the Least Square Prediction (LSP) method. Finally, we add a new inter prediction mode into H.264/AVC standard for P slice. The experimental results show that our algorithm improves encoding efficiency compared with H.264/AVC standard, with relatively increases in complexity.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于块匹配运动估计的帧间预测是视频编码的重要内容。但是这种方法在表示需要传输到解码器的运动信息的数据速率上有额外的开销。为了解决这一问题,提出了一种改进的基于时空自适应局部学习(STALL)模型的H.264/AVC中P片隐式运动信息互预测算法。根据H.264/AVC中的4 × 4块变换结构,首先自适应选择9个空间邻居和9个时间邻居,设计一个局部化的三维随机立方体作为训练窗口;利用这些信息,可以基于最小二乘预测(LSP)方法自适应计算模型参数。最后,我们在H.264/AVC标准中增加了一种新的P片间预测模式。实验结果表明,与H.264/AVC标准相比,该算法提高了编码效率,但复杂度相对增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter prediction based on spatio-temporal adaptive localized learning model
Inter prediction based on block matching motion estimation is important for video coding. But this method suffers from the additional overhead in data rate representing the motion information that needs to be transmitted to the decoder. To solve this problem, we present an improved implicit motion information inter prediction algorithm for P slice in H.264/AVC based on the spatio-temporal adaptive localized learning (STALL) model. According to 4 × 4 block transform structure in H.264/AVC, we first adaptively choose nine spatial neighbors and nine temporal neighbors, and a localized 3D casual cube is designed as training window. By using these information, the model parameters could be adaptively computed based on the Least Square Prediction (LSP) method. Finally, we add a new inter prediction mode into H.264/AVC standard for P slice. The experimental results show that our algorithm improves encoding efficiency compared with H.264/AVC standard, with relatively increases in complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信