β型求和积分算子的近似性质研究

Dhawal J. Bhatt, V. Mishra, R. Jana
{"title":"β型求和积分算子的近似性质研究","authors":"Dhawal J. Bhatt, V. Mishra, R. Jana","doi":"10.5890/DNC.2021.12.006","DOIUrl":null,"url":null,"abstract":"In the present paper we introduce Durrmeyer-type operator involving the beta function and Baskakov basis function and study its approximation properties. We obtain the rate of convergence in different terms. The uniform convergence of sequence of these operators is achieved using Korovkin's theorem. Order of approximation for functions of some special class is also obtained. We establish the Voronovskaja type asymptotic result for this operator and a direct estimate of approximation for sequence of these operator.","PeriodicalId":259579,"journal":{"name":"The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Approximation Properties of Beta Type Summation-Integral Operator\",\"authors\":\"Dhawal J. Bhatt, V. Mishra, R. Jana\",\"doi\":\"10.5890/DNC.2021.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we introduce Durrmeyer-type operator involving the beta function and Baskakov basis function and study its approximation properties. We obtain the rate of convergence in different terms. The uniform convergence of sequence of these operators is achieved using Korovkin's theorem. Order of approximation for functions of some special class is also obtained. We establish the Voronovskaja type asymptotic result for this operator and a direct estimate of approximation for sequence of these operator.\",\"PeriodicalId\":259579,\"journal\":{\"name\":\"The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5890/DNC.2021.12.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5890/DNC.2021.12.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了包含β函数和Baskakov基函数的durrmeyer型算子,并研究了其近似性质。我们得到了不同项下的收敛速度。利用科洛夫金定理,得到了这些算子序列的一致收敛性。对一类特殊的函数,给出了近似的阶数。我们建立了该算子的Voronovskaja型渐近结果和这些算子序列的逼近的直接估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Approximation Properties of Beta Type Summation-Integral Operator
In the present paper we introduce Durrmeyer-type operator involving the beta function and Baskakov basis function and study its approximation properties. We obtain the rate of convergence in different terms. The uniform convergence of sequence of these operators is achieved using Korovkin's theorem. Order of approximation for functions of some special class is also obtained. We establish the Voronovskaja type asymptotic result for this operator and a direct estimate of approximation for sequence of these operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信