鲁棒PDF恶意软件检测与图像可视化和处理技术

Andrew Corum, Donovan Jenkins, Jun Zheng
{"title":"鲁棒PDF恶意软件检测与图像可视化和处理技术","authors":"Andrew Corum, Donovan Jenkins, Jun Zheng","doi":"10.1109/ICDIS.2019.00024","DOIUrl":null,"url":null,"abstract":"PDF, as one of most popular document file format, has been frequently utilized as a vector by attackers to covey malware due to its flexible file structure and the ability to embed different kinds of content. In this paper, we propose a new learning-based method to detect PDF malware using image processing and processing techniques. The PDF files are first converted to grayscale images using image visualization techniques. Then various image features representing the distinct visual characteristics of PDF malware and benign PDF files are extracted. Finally, learning algorithms are applied to create the classification models to classify a new PDF file as malicious or benign. The performance of the proposed method was evaluated using Contagio PDF malware dataset. The results show that the proposed method is a viable solution for PDF malware detection. It is also shown that the proposed method is more robust to resist reverse mimicry attacks than the state-of-art learning-based method.","PeriodicalId":181673,"journal":{"name":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Robust PDF Malware Detection with Image Visualization and Processing Techniques\",\"authors\":\"Andrew Corum, Donovan Jenkins, Jun Zheng\",\"doi\":\"10.1109/ICDIS.2019.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PDF, as one of most popular document file format, has been frequently utilized as a vector by attackers to covey malware due to its flexible file structure and the ability to embed different kinds of content. In this paper, we propose a new learning-based method to detect PDF malware using image processing and processing techniques. The PDF files are first converted to grayscale images using image visualization techniques. Then various image features representing the distinct visual characteristics of PDF malware and benign PDF files are extracted. Finally, learning algorithms are applied to create the classification models to classify a new PDF file as malicious or benign. The performance of the proposed method was evaluated using Contagio PDF malware dataset. The results show that the proposed method is a viable solution for PDF malware detection. It is also shown that the proposed method is more robust to resist reverse mimicry attacks than the state-of-art learning-based method.\",\"PeriodicalId\":181673,\"journal\":{\"name\":\"2019 2nd International Conference on Data Intelligence and Security (ICDIS)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Data Intelligence and Security (ICDIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIS.2019.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIS.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

PDF作为最流行的文档文件格式之一,由于其灵活的文件结构和嵌入不同类型内容的能力,经常被攻击者用作传播恶意软件的载体。在本文中,我们提出了一种新的基于学习的方法,利用图像处理和处理技术来检测PDF恶意软件。首先使用图像可视化技术将PDF文件转换为灰度图像。然后提取PDF恶意文件和良性PDF文件不同的视觉特征。最后,应用学习算法创建分类模型,对新的PDF文件进行恶意或良性分类。利用传染性PDF恶意软件数据集对该方法的性能进行了评估。结果表明,该方法是一种可行的PDF恶意软件检测方案。研究还表明,该方法比基于学习的方法具有更强的抗反向模仿能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust PDF Malware Detection with Image Visualization and Processing Techniques
PDF, as one of most popular document file format, has been frequently utilized as a vector by attackers to covey malware due to its flexible file structure and the ability to embed different kinds of content. In this paper, we propose a new learning-based method to detect PDF malware using image processing and processing techniques. The PDF files are first converted to grayscale images using image visualization techniques. Then various image features representing the distinct visual characteristics of PDF malware and benign PDF files are extracted. Finally, learning algorithms are applied to create the classification models to classify a new PDF file as malicious or benign. The performance of the proposed method was evaluated using Contagio PDF malware dataset. The results show that the proposed method is a viable solution for PDF malware detection. It is also shown that the proposed method is more robust to resist reverse mimicry attacks than the state-of-art learning-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信