分布式流挖掘系统中网络分类器的资源管理

D. Turaga, O. Verscheure, U. Chaudhari, Lisa Amini
{"title":"分布式流挖掘系统中网络分类器的资源管理","authors":"D. Turaga, O. Verscheure, U. Chaudhari, Lisa Amini","doi":"10.1109/ICDM.2006.136","DOIUrl":null,"url":null,"abstract":"Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. This work provides a principled approach for the optimized allocation of system resources across a networked chain of classifiers. We begin with an illustrative example of how complex classification tasks can be decomposed into a network of binary classifiers. We formally define a global performance metric by recursively collapsing the chain of classifiers into one combined classifier. The performance metric trades off the end-to-end probabilities of detection and false alarm, both of which depend on the resources allocated to each individual classifier. We formulate the optimization problem and present optimal resource allocation results for both simulated and state-of-the-art classifier chains operating on telephony data.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"422 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Resource Management for Networked Classifiers in Distributed Stream Mining Systems\",\"authors\":\"D. Turaga, O. Verscheure, U. Chaudhari, Lisa Amini\",\"doi\":\"10.1109/ICDM.2006.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. This work provides a principled approach for the optimized allocation of system resources across a networked chain of classifiers. We begin with an illustrative example of how complex classification tasks can be decomposed into a network of binary classifiers. We formally define a global performance metric by recursively collapsing the chain of classifiers into one combined classifier. The performance metric trades off the end-to-end probabilities of detection and false alarm, both of which depend on the resources allocated to each individual classifier. We formulate the optimization problem and present optimal resource allocation results for both simulated and state-of-the-art classifier chains operating on telephony data.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"422 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

分类器网络正在引起系统和算法研究人员的注意,因为它们比单一模型分类器提供更高的准确性,可以分布在服务器网络上以提高可伸缩性,并且可以适应可用的系统资源。这项工作为跨分类器网络链的系统资源优化分配提供了一种原则性的方法。我们从一个说明性示例开始,说明如何将复杂的分类任务分解为二元分类器网络。我们通过递归地将分类器链折叠成一个组合分类器来正式定义全局性能度量。性能指标权衡了端到端的检测概率和假警报概率,这两者都依赖于分配给每个分类器的资源。我们制定了优化问题,并提出了在电话数据上操作的模拟和最先进的分类器链的最佳资源分配结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Management for Networked Classifiers in Distributed Stream Mining Systems
Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. This work provides a principled approach for the optimized allocation of system resources across a networked chain of classifiers. We begin with an illustrative example of how complex classification tasks can be decomposed into a network of binary classifiers. We formally define a global performance metric by recursively collapsing the chain of classifiers into one combined classifier. The performance metric trades off the end-to-end probabilities of detection and false alarm, both of which depend on the resources allocated to each individual classifier. We formulate the optimization problem and present optimal resource allocation results for both simulated and state-of-the-art classifier chains operating on telephony data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信