知识融合与时空数据清洗研究进展

Huchen Zhou, Mohan Li, Zhaoquan Gu
{"title":"知识融合与时空数据清洗研究进展","authors":"Huchen Zhou, Mohan Li, Zhaoquan Gu","doi":"10.1109/DSC50466.2020.00052","DOIUrl":null,"url":null,"abstract":"Knowledge fusion is aimed to establish the relationship between heterogeneous ontology or heterogeneous instances. Data cleaning is one of the key technologies for solving knowledge fusion problems. In this paper, we provide a brief survey of knowledge fusion and data cleaning. We first briefly introduce the importance and background of knowledge fusion and data cleaning. Then we discuss some recent methods for knowledge fusion and spatiotemporal data cleaning. Finally, we outline some future directions of knowledge fusion and data cleaning.","PeriodicalId":423182,"journal":{"name":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Knowledge Fusion and Spatiotemporal Data Cleaning: A Review\",\"authors\":\"Huchen Zhou, Mohan Li, Zhaoquan Gu\",\"doi\":\"10.1109/DSC50466.2020.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge fusion is aimed to establish the relationship between heterogeneous ontology or heterogeneous instances. Data cleaning is one of the key technologies for solving knowledge fusion problems. In this paper, we provide a brief survey of knowledge fusion and data cleaning. We first briefly introduce the importance and background of knowledge fusion and data cleaning. Then we discuss some recent methods for knowledge fusion and spatiotemporal data cleaning. Finally, we outline some future directions of knowledge fusion and data cleaning.\",\"PeriodicalId\":423182,\"journal\":{\"name\":\"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC50466.2020.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC50466.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

知识融合旨在建立异构本体或异构实例之间的关系。数据清洗是解决知识融合问题的关键技术之一。本文简要介绍了知识融合和数据清洗的研究现状。我们首先简要介绍了知识融合和数据清洗的重要性和背景。然后讨论了知识融合和时空数据清理的最新方法。最后,展望了知识融合和数据清洗的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Fusion and Spatiotemporal Data Cleaning: A Review
Knowledge fusion is aimed to establish the relationship between heterogeneous ontology or heterogeneous instances. Data cleaning is one of the key technologies for solving knowledge fusion problems. In this paper, we provide a brief survey of knowledge fusion and data cleaning. We first briefly introduce the importance and background of knowledge fusion and data cleaning. Then we discuss some recent methods for knowledge fusion and spatiotemporal data cleaning. Finally, we outline some future directions of knowledge fusion and data cleaning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信