基于降维的多样化植物图像检索

Sheng-Ping Zhu, Jixiang Du, C. Zhai, Zhong-Qiu Zhao
{"title":"基于降维的多样化植物图像检索","authors":"Sheng-Ping Zhu, Jixiang Du, C. Zhai, Zhong-Qiu Zhao","doi":"10.1109/CIS.2013.97","DOIUrl":null,"url":null,"abstract":"In recent years, content-based image retrieval achieved continuous development, but in the previous studies, only the relevance is cared in retrieval system, so many duplicate or near duplicate documents retrieved in response to a query and cannot satisfy the users. To solve this problem, we propose the Content-based Diversifying Plant Image Retrieval in this paper. In order to make the retrieval results have relevance and diversity, we extract plant image feature and use the relevance feedback technique based of SVM and the AP clustering algorithm. To accelerate retrieval, we use maximum variance projection (MVP) for dimensionality reduction. Experimental results show that our approach can achieve good performance.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversifying Plant Image Retrieval with Dimensionality Reduction\",\"authors\":\"Sheng-Ping Zhu, Jixiang Du, C. Zhai, Zhong-Qiu Zhao\",\"doi\":\"10.1109/CIS.2013.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, content-based image retrieval achieved continuous development, but in the previous studies, only the relevance is cared in retrieval system, so many duplicate or near duplicate documents retrieved in response to a query and cannot satisfy the users. To solve this problem, we propose the Content-based Diversifying Plant Image Retrieval in this paper. In order to make the retrieval results have relevance and diversity, we extract plant image feature and use the relevance feedback technique based of SVM and the AP clustering algorithm. To accelerate retrieval, we use maximum variance projection (MVP) for dimensionality reduction. Experimental results show that our approach can achieve good performance.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于内容的图像检索得到了不断的发展,但在以往的研究中,检索系统只关心相关性,在响应一个查询时检索到许多重复或接近重复的文档,不能满足用户的需求。为了解决这一问题,本文提出了基于内容的植物图像多样化检索方法。为了使检索结果具有相关性和多样性,我们提取植物图像特征,并采用基于SVM和AP聚类算法的相关反馈技术。为了加快检索速度,我们使用最大方差投影(MVP)进行降维。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversifying Plant Image Retrieval with Dimensionality Reduction
In recent years, content-based image retrieval achieved continuous development, but in the previous studies, only the relevance is cared in retrieval system, so many duplicate or near duplicate documents retrieved in response to a query and cannot satisfy the users. To solve this problem, we propose the Content-based Diversifying Plant Image Retrieval in this paper. In order to make the retrieval results have relevance and diversity, we extract plant image feature and use the relevance feedback technique based of SVM and the AP clustering algorithm. To accelerate retrieval, we use maximum variance projection (MVP) for dimensionality reduction. Experimental results show that our approach can achieve good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信