{"title":"椭圆曲线在正特征整体域上的第一和第二K群","authors":"S. Kondo, S. Yasuda","doi":"10.5802/aif.3202","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the maximal divisible subgroup of groups $K_1$ and $K_2$ of an elliptic curve $E$ over a function field is uniquely divisible. Further those $K$-groups modulo this uniquely divisible subgroup are explicitly computed. We also calculate the motivic cohomology groups of the minimal regular model of $E$, which is an elliptic surface over a finite field.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First and second $K$-groups of an elliptic curve over a global field of positive characteristic\",\"authors\":\"S. Kondo, S. Yasuda\",\"doi\":\"10.5802/aif.3202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the maximal divisible subgroup of groups $K_1$ and $K_2$ of an elliptic curve $E$ over a function field is uniquely divisible. Further those $K$-groups modulo this uniquely divisible subgroup are explicitly computed. We also calculate the motivic cohomology groups of the minimal regular model of $E$, which is an elliptic surface over a finite field.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/aif.3202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First and second $K$-groups of an elliptic curve over a global field of positive characteristic
In this paper, we show that the maximal divisible subgroup of groups $K_1$ and $K_2$ of an elliptic curve $E$ over a function field is uniquely divisible. Further those $K$-groups modulo this uniquely divisible subgroup are explicitly computed. We also calculate the motivic cohomology groups of the minimal regular model of $E$, which is an elliptic surface over a finite field.