介电球中有限圆锥屏的轴对称波衍射

D. Kuryliak
{"title":"介电球中有限圆锥屏的轴对称波衍射","authors":"D. Kuryliak","doi":"10.1109/MMET.1996.565726","DOIUrl":null,"url":null,"abstract":"Consider wave diffraction by a finite cone or frustum inside a dielectric sphere. It is known that in the wave diffraction by a finite cone in homogeneous medium, the solution of the problem can be reduced to the linear algebraic infinite equations system (LAIES) which has a convolution operator form in a static limit. The purpose of this paper is to separate the convolution operators in our problems and apply their properties for the regularization procedure.","PeriodicalId":270641,"journal":{"name":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The axial-symmetric wave diffraction by finite conical screens in a dielectric sphere\",\"authors\":\"D. Kuryliak\",\"doi\":\"10.1109/MMET.1996.565726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider wave diffraction by a finite cone or frustum inside a dielectric sphere. It is known that in the wave diffraction by a finite cone in homogeneous medium, the solution of the problem can be reduced to the linear algebraic infinite equations system (LAIES) which has a convolution operator form in a static limit. The purpose of this paper is to separate the convolution operators in our problems and apply their properties for the regularization procedure.\",\"PeriodicalId\":270641,\"journal\":{\"name\":\"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.1996.565726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMET '96. VIth International Conference on Mathematical Methods in Electromagnetic Theory. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.1996.565726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑由介电球内的有限锥或锥体产生的波衍射。已知在均匀介质中有限锥波衍射问题的解可以简化为静态极限下具有卷积算子形式的线性代数无穷方程组。本文的目的是分离问题中的卷积算子,并将它们的性质应用于正则化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The axial-symmetric wave diffraction by finite conical screens in a dielectric sphere
Consider wave diffraction by a finite cone or frustum inside a dielectric sphere. It is known that in the wave diffraction by a finite cone in homogeneous medium, the solution of the problem can be reduced to the linear algebraic infinite equations system (LAIES) which has a convolution operator form in a static limit. The purpose of this paper is to separate the convolution operators in our problems and apply their properties for the regularization procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信