使用可扩展分析系统重新思考数据密集型科学

Frank A. Nothaft, Matt Massie, Timothy Danford, Zhao Zhang, Uri Laserson, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Hammerbacher, M. Linderman, M. Franklin, A. Joseph, D. Patterson
{"title":"使用可扩展分析系统重新思考数据密集型科学","authors":"Frank A. Nothaft, Matt Massie, Timothy Danford, Zhao Zhang, Uri Laserson, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Hammerbacher, M. Linderman, M. Franklin, A. Joseph, D. Patterson","doi":"10.1145/2723372.2742787","DOIUrl":null,"url":null,"abstract":"\"Next generation\" data acquisition technologies are allowing scientists to collect exponentially more data at a lower cost. These trends are broadly impacting many scientific fields, including genomics, astronomy, and neuroscience. We can attack the problem caused by exponential data growth by applying horizontally scalable techniques from current analytics systems to accelerate scientific processing pipelines. In this paper, we describe ADAM, an example genomics pipeline that leverages the open-source Apache Spark and Parquet systems to achieve a 28x speedup over current genomics pipelines, while reducing cost by 63%. From building this system, we were able to distill a set of techniques for implementing scientific analyses efficiently using commodity \"big data\" systems. To demonstrate the generality of our architecture, we then implement a scalable astronomy image processing system which achieves a 2.8--8.9x improvement over the state-of-the-art MPI-based system.","PeriodicalId":168391,"journal":{"name":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Rethinking Data-Intensive Science Using Scalable Analytics Systems\",\"authors\":\"Frank A. Nothaft, Matt Massie, Timothy Danford, Zhao Zhang, Uri Laserson, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Hammerbacher, M. Linderman, M. Franklin, A. Joseph, D. Patterson\",\"doi\":\"10.1145/2723372.2742787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Next generation\\\" data acquisition technologies are allowing scientists to collect exponentially more data at a lower cost. These trends are broadly impacting many scientific fields, including genomics, astronomy, and neuroscience. We can attack the problem caused by exponential data growth by applying horizontally scalable techniques from current analytics systems to accelerate scientific processing pipelines. In this paper, we describe ADAM, an example genomics pipeline that leverages the open-source Apache Spark and Parquet systems to achieve a 28x speedup over current genomics pipelines, while reducing cost by 63%. From building this system, we were able to distill a set of techniques for implementing scientific analyses efficiently using commodity \\\"big data\\\" systems. To demonstrate the generality of our architecture, we then implement a scalable astronomy image processing system which achieves a 2.8--8.9x improvement over the state-of-the-art MPI-based system.\",\"PeriodicalId\":168391,\"journal\":{\"name\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2723372.2742787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2723372.2742787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

“下一代”数据采集技术使科学家能够以更低的成本收集指数级的更多数据。这些趋势正在广泛影响许多科学领域,包括基因组学、天文学和神经科学。我们可以通过应用当前分析系统的水平可扩展技术来加速科学处理管道,从而解决指数数据增长带来的问题。在本文中,我们描述了ADAM,这是一个基因组学管道的例子,它利用开源的Apache Spark和Parquet系统,比当前的基因组学管道实现了28倍的加速,同时降低了63%的成本。通过构建这个系统,我们能够提炼出一套技术,利用商品“大数据”系统有效地实施科学分析。为了展示我们架构的通用性,我们随后实现了一个可扩展的天文图像处理系统,该系统比最先进的基于mpi的系统提高了2.8- 8.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rethinking Data-Intensive Science Using Scalable Analytics Systems
"Next generation" data acquisition technologies are allowing scientists to collect exponentially more data at a lower cost. These trends are broadly impacting many scientific fields, including genomics, astronomy, and neuroscience. We can attack the problem caused by exponential data growth by applying horizontally scalable techniques from current analytics systems to accelerate scientific processing pipelines. In this paper, we describe ADAM, an example genomics pipeline that leverages the open-source Apache Spark and Parquet systems to achieve a 28x speedup over current genomics pipelines, while reducing cost by 63%. From building this system, we were able to distill a set of techniques for implementing scientific analyses efficiently using commodity "big data" systems. To demonstrate the generality of our architecture, we then implement a scalable astronomy image processing system which achieves a 2.8--8.9x improvement over the state-of-the-art MPI-based system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信