{"title":"考虑新能源消耗和系统峰谷差异的电动汽车有序充电","authors":"Chen Yiyao, Xue Yingnan, Wu Yingying, Liang Yaojun, Wang Qianchun, Duan Xinhui","doi":"10.1109/ACPEE53904.2022.9784024","DOIUrl":null,"url":null,"abstract":"Electric vehicles as controllable loads connected to the grid can improve the utilization of wind and PV and thus reduce the amount of renewable energy curtailment, but if they are not regulated, they can cause harm to the operation of the grid. This article adopts an algorithm called cuckoo search which has global convergence is used to perform a two-stage optimization of the system load. In the first stage, the amount of wind and solar power curtailment is optimized, and it is obvious that the amount of new energy consumption increases from 5423kW to 5842kW, but the power consumption in peak hours increases significantly, forming a phenomenon of \"peaking on peak\". Compared with the first stage, the peak load curve is smoothed out during the second stage and the valley load curve is filled, and the difference between the highest and lowest value of the electricity load is reduced from 254 kW to 198 kW. The results show that this optimization method not only increases the amount of new energy consumption, but also stabilizes the load fluctuations in order to mitigate the impact of large-scale electric vehicle charging on the electric grid.","PeriodicalId":118112,"journal":{"name":"2022 7th Asia Conference on Power and Electrical Engineering (ACPEE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Orderly charging of electric vehicles considering new energy consumption and system peak-to-valley differences\",\"authors\":\"Chen Yiyao, Xue Yingnan, Wu Yingying, Liang Yaojun, Wang Qianchun, Duan Xinhui\",\"doi\":\"10.1109/ACPEE53904.2022.9784024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric vehicles as controllable loads connected to the grid can improve the utilization of wind and PV and thus reduce the amount of renewable energy curtailment, but if they are not regulated, they can cause harm to the operation of the grid. This article adopts an algorithm called cuckoo search which has global convergence is used to perform a two-stage optimization of the system load. In the first stage, the amount of wind and solar power curtailment is optimized, and it is obvious that the amount of new energy consumption increases from 5423kW to 5842kW, but the power consumption in peak hours increases significantly, forming a phenomenon of \\\"peaking on peak\\\". Compared with the first stage, the peak load curve is smoothed out during the second stage and the valley load curve is filled, and the difference between the highest and lowest value of the electricity load is reduced from 254 kW to 198 kW. The results show that this optimization method not only increases the amount of new energy consumption, but also stabilizes the load fluctuations in order to mitigate the impact of large-scale electric vehicle charging on the electric grid.\",\"PeriodicalId\":118112,\"journal\":{\"name\":\"2022 7th Asia Conference on Power and Electrical Engineering (ACPEE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th Asia Conference on Power and Electrical Engineering (ACPEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPEE53904.2022.9784024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th Asia Conference on Power and Electrical Engineering (ACPEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPEE53904.2022.9784024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Orderly charging of electric vehicles considering new energy consumption and system peak-to-valley differences
Electric vehicles as controllable loads connected to the grid can improve the utilization of wind and PV and thus reduce the amount of renewable energy curtailment, but if they are not regulated, they can cause harm to the operation of the grid. This article adopts an algorithm called cuckoo search which has global convergence is used to perform a two-stage optimization of the system load. In the first stage, the amount of wind and solar power curtailment is optimized, and it is obvious that the amount of new energy consumption increases from 5423kW to 5842kW, but the power consumption in peak hours increases significantly, forming a phenomenon of "peaking on peak". Compared with the first stage, the peak load curve is smoothed out during the second stage and the valley load curve is filled, and the difference between the highest and lowest value of the electricity load is reduced from 254 kW to 198 kW. The results show that this optimization method not only increases the amount of new energy consumption, but also stabilizes the load fluctuations in order to mitigate the impact of large-scale electric vehicle charging on the electric grid.