{"title":"基于进化混合RBF-MLP网络的肌电信号分类","authors":"A. Zalzala, N. Chaiyaratana","doi":"10.1109/CEC.2000.870365","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid neural structure using radial-basis functions (RBF) and multilayer perceptron (MLP) networks. The hybrid network is composed of one RBF network and a number of MLPs, and is trained using a combined genetic/unsupervised/supervised learning algorithm. The genetic and unsupervised learning algorithms are used to locate the centres of the RBF part in the hybrid network. In addition, the supervised learning algorithm, based on a back-propagation algorithm, is used to train the connection weights of the MLP part in the hybrid network. Performances of the hybrid network are initially tested using a two-spiral benchmark problem. Several simulation results are reported for applying the algorithm in the classification of myoelectric or electromyographic (EMG) signals where the GA-based network proved most efficient.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Myoelectric signal classification using evolutionary hybrid RBF-MLP networks\",\"authors\":\"A. Zalzala, N. Chaiyaratana\",\"doi\":\"10.1109/CEC.2000.870365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a hybrid neural structure using radial-basis functions (RBF) and multilayer perceptron (MLP) networks. The hybrid network is composed of one RBF network and a number of MLPs, and is trained using a combined genetic/unsupervised/supervised learning algorithm. The genetic and unsupervised learning algorithms are used to locate the centres of the RBF part in the hybrid network. In addition, the supervised learning algorithm, based on a back-propagation algorithm, is used to train the connection weights of the MLP part in the hybrid network. Performances of the hybrid network are initially tested using a two-spiral benchmark problem. Several simulation results are reported for applying the algorithm in the classification of myoelectric or electromyographic (EMG) signals where the GA-based network proved most efficient.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Myoelectric signal classification using evolutionary hybrid RBF-MLP networks
This paper introduces a hybrid neural structure using radial-basis functions (RBF) and multilayer perceptron (MLP) networks. The hybrid network is composed of one RBF network and a number of MLPs, and is trained using a combined genetic/unsupervised/supervised learning algorithm. The genetic and unsupervised learning algorithms are used to locate the centres of the RBF part in the hybrid network. In addition, the supervised learning algorithm, based on a back-propagation algorithm, is used to train the connection weights of the MLP part in the hybrid network. Performances of the hybrid network are initially tested using a two-spiral benchmark problem. Several simulation results are reported for applying the algorithm in the classification of myoelectric or electromyographic (EMG) signals where the GA-based network proved most efficient.