混合PSO-GA算法在高维复杂函数优化中的应用

Jiale Zhang, Haodong Wang, Jiaxing Zhao, Shuangyu Duan, Lianshuan Shi
{"title":"混合PSO-GA算法在高维复杂函数优化中的应用","authors":"Jiale Zhang, Haodong Wang, Jiaxing Zhao, Shuangyu Duan, Lianshuan Shi","doi":"10.1145/3517077.3517103","DOIUrl":null,"url":null,"abstract":"To improve the optimization of high-dimensional complex functions,In this paper,we combine both GA and PSO to propose an improved hybrid PSO-GA algorithm.First,the learning factors and inertial weights of the first half PSO are modified in the improved algorithm to optimize the local and global search.An adaptive GA is then introduced in the second half of the algorithm to balance population diversity and avoid falling into local optimal.Finally,this paper uses four typical test functions,performing a testing and comparative analysis of the algorithm.Experimental results show that the improved hybrid algorithm can not only effectively avoid the local optimum,but also improve the optimization ability of the function.","PeriodicalId":233686,"journal":{"name":"2022 7th International Conference on Multimedia and Image Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of hybrid PSO-GA algorithm in optimization of high-dimensional complex functions\",\"authors\":\"Jiale Zhang, Haodong Wang, Jiaxing Zhao, Shuangyu Duan, Lianshuan Shi\",\"doi\":\"10.1145/3517077.3517103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the optimization of high-dimensional complex functions,In this paper,we combine both GA and PSO to propose an improved hybrid PSO-GA algorithm.First,the learning factors and inertial weights of the first half PSO are modified in the improved algorithm to optimize the local and global search.An adaptive GA is then introduced in the second half of the algorithm to balance population diversity and avoid falling into local optimal.Finally,this paper uses four typical test functions,performing a testing and comparative analysis of the algorithm.Experimental results show that the improved hybrid algorithm can not only effectively avoid the local optimum,but also improve the optimization ability of the function.\",\"PeriodicalId\":233686,\"journal\":{\"name\":\"2022 7th International Conference on Multimedia and Image Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Multimedia and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517077.3517103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Multimedia and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517077.3517103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高高维复杂函数的优化性能,本文将遗传算法与粒子群算法相结合,提出了一种改进的混合粒子群算法。首先,改进算法对前半部分粒子群的学习因子和惯性权值进行修正,优化局部搜索和全局搜索;然后在算法的后半部分引入自适应遗传算法来平衡种群多样性,避免陷入局部最优。最后,本文利用四种典型的测试函数,对算法进行了测试和对比分析。实验结果表明,改进的混合算法不仅能有效地避免局部最优,而且提高了函数的优化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of hybrid PSO-GA algorithm in optimization of high-dimensional complex functions
To improve the optimization of high-dimensional complex functions,In this paper,we combine both GA and PSO to propose an improved hybrid PSO-GA algorithm.First,the learning factors and inertial weights of the first half PSO are modified in the improved algorithm to optimize the local and global search.An adaptive GA is then introduced in the second half of the algorithm to balance population diversity and avoid falling into local optimal.Finally,this paper uses four typical test functions,performing a testing and comparative analysis of the algorithm.Experimental results show that the improved hybrid algorithm can not only effectively avoid the local optimum,but also improve the optimization ability of the function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信