脉冲噪声环境下随机数据复用的GMCC自适应滤波算法

Yuzong Mu, Ji Zhao, Qiang Li, Hongbin Zhang
{"title":"脉冲噪声环境下随机数据复用的GMCC自适应滤波算法","authors":"Yuzong Mu, Ji Zhao, Qiang Li, Hongbin Zhang","doi":"10.1109/ICEICT55736.2022.9908727","DOIUrl":null,"url":null,"abstract":"The generalized maximum correntropy criterion (GMCC) has been widely applied for robust adaptive filtering (AF) algorithm. The gradient-based GMCC (GB-GMCC) algorithm realizes good filtering performance for system identification under impulsive noise environments. However, the highly colored input signal can damage the convergence rate of GB-GMCC. Therefore, based on the data-reusing method, we propose a robust AF algorithm, called as data-reusing GMCC (DR-GMCC) algorithm, which uses the information of the latest $K$ input data to remedy the convergence limitation of GB-GMCC. In addition, to enhance the filtering performance of DR-GMCC, we use a random strategy to select the past $K$ input data leading to a new algorithm, named as random DR-GMCC (RDR-GMCC). Furthermore, for RDR-GMCC, we also analyze the mean-square convergence and computational complexity. Compared with existing algorithms, simulation results verify that RDR-GMCC achieves better filtering accuracy and faster convergence rate.","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Random Data-Reusing GMCC Adaptive Filtering Algorithm for System Identification Under Impulsive Noise Environments\",\"authors\":\"Yuzong Mu, Ji Zhao, Qiang Li, Hongbin Zhang\",\"doi\":\"10.1109/ICEICT55736.2022.9908727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized maximum correntropy criterion (GMCC) has been widely applied for robust adaptive filtering (AF) algorithm. The gradient-based GMCC (GB-GMCC) algorithm realizes good filtering performance for system identification under impulsive noise environments. However, the highly colored input signal can damage the convergence rate of GB-GMCC. Therefore, based on the data-reusing method, we propose a robust AF algorithm, called as data-reusing GMCC (DR-GMCC) algorithm, which uses the information of the latest $K$ input data to remedy the convergence limitation of GB-GMCC. In addition, to enhance the filtering performance of DR-GMCC, we use a random strategy to select the past $K$ input data leading to a new algorithm, named as random DR-GMCC (RDR-GMCC). Furthermore, for RDR-GMCC, we also analyze the mean-square convergence and computational complexity. Compared with existing algorithms, simulation results verify that RDR-GMCC achieves better filtering accuracy and faster convergence rate.\",\"PeriodicalId\":179327,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT55736.2022.9908727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9908727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义最大熵准则(GMCC)被广泛应用于鲁棒自适应滤波(AF)算法。基于梯度的GMCC (GB-GMCC)算法对脉冲噪声环境下的系统辨识实现了良好的滤波性能。然而,高颜色的输入信号会破坏GB-GMCC的收敛速度。因此,在数据重用方法的基础上,我们提出了一种鲁棒的自动识别算法,称为数据重用GMCC (DR-GMCC)算法,该算法利用最新$K$输入数据的信息来弥补GB-GMCC的收敛性限制。此外,为了增强DR-GMCC的滤波性能,我们采用随机策略选择过去$K$的输入数据,从而形成一种新的算法,称为随机DR-GMCC (RDR-GMCC)。此外,对于RDR-GMCC,我们还分析了均方收敛性和计算复杂度。仿真结果验证了RDR-GMCC算法具有更好的滤波精度和更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Random Data-Reusing GMCC Adaptive Filtering Algorithm for System Identification Under Impulsive Noise Environments
The generalized maximum correntropy criterion (GMCC) has been widely applied for robust adaptive filtering (AF) algorithm. The gradient-based GMCC (GB-GMCC) algorithm realizes good filtering performance for system identification under impulsive noise environments. However, the highly colored input signal can damage the convergence rate of GB-GMCC. Therefore, based on the data-reusing method, we propose a robust AF algorithm, called as data-reusing GMCC (DR-GMCC) algorithm, which uses the information of the latest $K$ input data to remedy the convergence limitation of GB-GMCC. In addition, to enhance the filtering performance of DR-GMCC, we use a random strategy to select the past $K$ input data leading to a new algorithm, named as random DR-GMCC (RDR-GMCC). Furthermore, for RDR-GMCC, we also analyze the mean-square convergence and computational complexity. Compared with existing algorithms, simulation results verify that RDR-GMCC achieves better filtering accuracy and faster convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信