新加坡英语SenticNet:一个基于概念的新加坡英语情感资源

Danyuan Ho, Diyana Hamzah, Soujanya Poria, E. Cambria
{"title":"新加坡英语SenticNet:一个基于概念的新加坡英语情感资源","authors":"Danyuan Ho, Diyana Hamzah, Soujanya Poria, E. Cambria","doi":"10.1109/SSCI.2018.8628796","DOIUrl":null,"url":null,"abstract":"Singlish (or Singapore Colloquial English) is markedly distinct from Standard English due to extensive influence from other languages in Singapore. There is thus a need to construct Singlish-specific resources and tools to improve the sentiment analysis performance of online texts in Singlish. This paper leverages sentic computing techniques to develop Singlish SenticNet, a concept-level resource for sentiment analysis that provides the semantics and sentics associated with 10,000 words and multi-word expressions in Singlish. It is semi-automatically constructed by applying graph-mining and multi-dimensional scaling techniques on the affective commonsense knowledge collected from different sources. The knowledge is represented redundantly at three levels (semantic network, matrix, and vector space), each useful for a certain reasoning. A preliminary evaluation revealed a higher accuracy for Singlish SenticNet than SenticNet in the polarity assessment of Singlish tweets.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Singlish SenticNet: A Concept-Based Sentiment Resource for Singapore English\",\"authors\":\"Danyuan Ho, Diyana Hamzah, Soujanya Poria, E. Cambria\",\"doi\":\"10.1109/SSCI.2018.8628796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singlish (or Singapore Colloquial English) is markedly distinct from Standard English due to extensive influence from other languages in Singapore. There is thus a need to construct Singlish-specific resources and tools to improve the sentiment analysis performance of online texts in Singlish. This paper leverages sentic computing techniques to develop Singlish SenticNet, a concept-level resource for sentiment analysis that provides the semantics and sentics associated with 10,000 words and multi-word expressions in Singlish. It is semi-automatically constructed by applying graph-mining and multi-dimensional scaling techniques on the affective commonsense knowledge collected from different sources. The knowledge is represented redundantly at three levels (semantic network, matrix, and vector space), each useful for a certain reasoning. A preliminary evaluation revealed a higher accuracy for Singlish SenticNet than SenticNet in the polarity assessment of Singlish tweets.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于受到新加坡其他语言的广泛影响,新加坡英语(或新加坡口语英语)与标准英语明显不同。因此,有必要构建针对新加坡英语的资源和工具来提高新加坡英语在线文本的情感分析性能。本文利用感知计算技术开发Singlish SenticNet,这是一个用于情感分析的概念级资源,提供了与新加坡英语中10,000个单词和多单词表达相关的语义和语义。利用图挖掘和多维标度技术对不同来源的情感常识知识进行半自动构建。知识被冗余地表示为三个层次(语义网络、矩阵和向量空间),每个层次都对特定的推理有用。初步评估显示,Singlish SenticNet在新加坡英语推文极性评估方面的准确性高于SenticNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singlish SenticNet: A Concept-Based Sentiment Resource for Singapore English
Singlish (or Singapore Colloquial English) is markedly distinct from Standard English due to extensive influence from other languages in Singapore. There is thus a need to construct Singlish-specific resources and tools to improve the sentiment analysis performance of online texts in Singlish. This paper leverages sentic computing techniques to develop Singlish SenticNet, a concept-level resource for sentiment analysis that provides the semantics and sentics associated with 10,000 words and multi-word expressions in Singlish. It is semi-automatically constructed by applying graph-mining and multi-dimensional scaling techniques on the affective commonsense knowledge collected from different sources. The knowledge is represented redundantly at three levels (semantic network, matrix, and vector space), each useful for a certain reasoning. A preliminary evaluation revealed a higher accuracy for Singlish SenticNet than SenticNet in the polarity assessment of Singlish tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信