基于粒子马尔可夫链蒙特卡罗的RC电路偏态空间建模及参数估计

R. Farnoosh, A. Hajrajabi
{"title":"基于粒子马尔可夫链蒙特卡罗的RC电路偏态空间建模及参数估计","authors":"R. Farnoosh, A. Hajrajabi","doi":"10.18869/acadpub.jsri.12.2.129","DOIUrl":null,"url":null,"abstract":"In this paper, a skew normal state space model of RC electrical circuit is presented by considering the stochastic differential equation of the this circuit as the dynamic model with colored and white noise and considering a skew normal distribution instead of normal as the measurement noise distribution. Optimal filtering technique via sequential Monte Carlo perspective is developed for tracking the charge as the hidden state of this model. Furthermore, it is assumed that this model contains unknown parameters (resistance, capacitor, mean, variance and shape parameter of the skew normal as the measurement noise distribution). Bayesian framework is applied for estimation of both the hidden charge and the unknown parameters using particle marginal Metropolis-Hastings scheme. It is shown that the coverage percentage of skew normal is more than the one of normal as the measurement noise. Some simulation studies are carried out to demonstrate the efficiency of the proposed approaches.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"286 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skew Normal State Space Modeling of RC Electrical Circuit and Parameters Estimation based on Particle Markov Chain Monte Carlo\",\"authors\":\"R. Farnoosh, A. Hajrajabi\",\"doi\":\"10.18869/acadpub.jsri.12.2.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a skew normal state space model of RC electrical circuit is presented by considering the stochastic differential equation of the this circuit as the dynamic model with colored and white noise and considering a skew normal distribution instead of normal as the measurement noise distribution. Optimal filtering technique via sequential Monte Carlo perspective is developed for tracking the charge as the hidden state of this model. Furthermore, it is assumed that this model contains unknown parameters (resistance, capacitor, mean, variance and shape parameter of the skew normal as the measurement noise distribution). Bayesian framework is applied for estimation of both the hidden charge and the unknown parameters using particle marginal Metropolis-Hastings scheme. It is shown that the coverage percentage of skew normal is more than the one of normal as the measurement noise. Some simulation studies are carried out to demonstrate the efficiency of the proposed approaches.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"286 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/acadpub.jsri.12.2.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/acadpub.jsri.12.2.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将RC电路的随机微分方程作为带有色噪声和白噪声的动态模型,考虑测量噪声的分布不是正态分布,而是偏态正态分布,建立了RC电路的偏态正态空间模型。采用时序蒙特卡罗视角的最优滤波技术,将电荷作为该模型的隐藏状态进行跟踪。进一步,假设该模型包含未知参数(电阻、电容、均值、方差和斜正态的形状参数作为测量噪声分布)。采用粒子边缘Metropolis-Hastings格式,将贝叶斯框架应用于隐电荷和未知参数的估计。结果表明,作为测量噪声,偏态正态的覆盖百分比大于正态的覆盖百分比。一些仿真研究证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skew Normal State Space Modeling of RC Electrical Circuit and Parameters Estimation based on Particle Markov Chain Monte Carlo
In this paper, a skew normal state space model of RC electrical circuit is presented by considering the stochastic differential equation of the this circuit as the dynamic model with colored and white noise and considering a skew normal distribution instead of normal as the measurement noise distribution. Optimal filtering technique via sequential Monte Carlo perspective is developed for tracking the charge as the hidden state of this model. Furthermore, it is assumed that this model contains unknown parameters (resistance, capacitor, mean, variance and shape parameter of the skew normal as the measurement noise distribution). Bayesian framework is applied for estimation of both the hidden charge and the unknown parameters using particle marginal Metropolis-Hastings scheme. It is shown that the coverage percentage of skew normal is more than the one of normal as the measurement noise. Some simulation studies are carried out to demonstrate the efficiency of the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信