多层感知器在LIBS蛋白光谱分类中的性能

D. Pokrajac, T. Vance, A. Lazarevic, A. Marcano, Y. Markushin, N. Melikechi, N. Reljin
{"title":"多层感知器在LIBS蛋白光谱分类中的性能","authors":"D. Pokrajac, T. Vance, A. Lazarevic, A. Marcano, Y. Markushin, N. Melikechi, N. Reljin","doi":"10.1109/NEUREL.2010.5644078","DOIUrl":null,"url":null,"abstract":"We investigate performance of neural networks for classification of laser-induced breakdown spectroscopic data of four proteins: Bovine Serum Albumin, Osteopontin, Leptin and Insulin-like Growth Factor II. We utilize principal component analysis algorithm for feature extraction and multilayer perceptrons algorithms with one and two hidden layers. We employ leave-one-out procedure for classifier evaluation. Our experimental results indicate that methods with linear convergence can provide classification accuracy superior to methods with quadratic convergence.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Performance of multilayer perceptrons for classification of LIBS protein spectra\",\"authors\":\"D. Pokrajac, T. Vance, A. Lazarevic, A. Marcano, Y. Markushin, N. Melikechi, N. Reljin\",\"doi\":\"10.1109/NEUREL.2010.5644078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate performance of neural networks for classification of laser-induced breakdown spectroscopic data of four proteins: Bovine Serum Albumin, Osteopontin, Leptin and Insulin-like Growth Factor II. We utilize principal component analysis algorithm for feature extraction and multilayer perceptrons algorithms with one and two hidden layers. We employ leave-one-out procedure for classifier evaluation. Our experimental results indicate that methods with linear convergence can provide classification accuracy superior to methods with quadratic convergence.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了神经网络对四种蛋白质的激光诱导击穿光谱数据进行分类的性能:牛血清白蛋白、骨桥蛋白、瘦素和胰岛素样生长因子II。我们使用主成分分析算法进行特征提取,并使用带有一层和两层隐藏层的多层感知器算法。我们采用留一法对分类器进行评价。实验结果表明,线性收敛方法的分类精度优于二次收敛方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of multilayer perceptrons for classification of LIBS protein spectra
We investigate performance of neural networks for classification of laser-induced breakdown spectroscopic data of four proteins: Bovine Serum Albumin, Osteopontin, Leptin and Insulin-like Growth Factor II. We utilize principal component analysis algorithm for feature extraction and multilayer perceptrons algorithms with one and two hidden layers. We employ leave-one-out procedure for classifier evaluation. Our experimental results indicate that methods with linear convergence can provide classification accuracy superior to methods with quadratic convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信