二维可分离分母离散时间系统的频率加权平衡截断

Deepak Kumar, Umair Zulfiqar, V. Sreeram
{"title":"二维可分离分母离散时间系统的频率加权平衡截断","authors":"Deepak Kumar, Umair Zulfiqar, V. Sreeram","doi":"10.1109/ANZCC.2018.8606618","DOIUrl":null,"url":null,"abstract":"A frequency-weighted balanced truncation technique for two-dimensional (2-D) separable denominator discrete-time systems is presented that is applicable with single-sided and double-sided weights. The proposed method is straightforward and efficient than the existing methods as the computation of controllability and observability Gramians doesn’t require solutions of Lyapunov inequalities and iterative algorithms. The simulation results of numerical examples are given to demonstrate the effectiveness of the proposed approach.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency-weighted balanced Truncation of 2-D separable denominator discrete-time systems\",\"authors\":\"Deepak Kumar, Umair Zulfiqar, V. Sreeram\",\"doi\":\"10.1109/ANZCC.2018.8606618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A frequency-weighted balanced truncation technique for two-dimensional (2-D) separable denominator discrete-time systems is presented that is applicable with single-sided and double-sided weights. The proposed method is straightforward and efficient than the existing methods as the computation of controllability and observability Gramians doesn’t require solutions of Lyapunov inequalities and iterative algorithms. The simulation results of numerical examples are given to demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":358801,\"journal\":{\"name\":\"2018 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2018.8606618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种适用于单面和双面权值的二维可分分母离散时间系统的频率加权平衡截断技术。由于该方法不需要求解Lyapunov不等式和迭代算法,因此与现有方法相比,该方法简单有效。数值算例的仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency-weighted balanced Truncation of 2-D separable denominator discrete-time systems
A frequency-weighted balanced truncation technique for two-dimensional (2-D) separable denominator discrete-time systems is presented that is applicable with single-sided and double-sided weights. The proposed method is straightforward and efficient than the existing methods as the computation of controllability and observability Gramians doesn’t require solutions of Lyapunov inequalities and iterative algorithms. The simulation results of numerical examples are given to demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信