非发散型椭圆均匀化问题的最优收敛速率:分析与数值实例

Timo Sprekeler, H. Tran
{"title":"非发散型椭圆均匀化问题的最优收敛速率:分析与数值实例","authors":"Timo Sprekeler, H. Tran","doi":"10.1137/20M137121X","DOIUrl":null,"url":null,"abstract":"We study optimal convergence rates in the periodic homogenization of linear elliptic equations of the form $-A(x/\\varepsilon):D^2 u^{\\varepsilon} = f$ subject to a homogeneous Dirichlet boundary condition. We show that the optimal rate for the convergence of $u^{\\varepsilon}$ to the solution of the corresponding homogenized problem in the $W^{1,p}$-norm is $\\mathcal{O}(\\varepsilon)$. We further obtain optimal gradient and Hessian bounds with correction terms taken into account in the $L^p$-norm. We then provide an explicit $c$-bad diffusion matrix and use it to perform various numerical experiments, which demonstrate the optimality of the obtained rates.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimal Convergence Rates for Elliptic Homogenization Problems in Nondivergence-Form: Analysis and Numerical Illustrations\",\"authors\":\"Timo Sprekeler, H. Tran\",\"doi\":\"10.1137/20M137121X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study optimal convergence rates in the periodic homogenization of linear elliptic equations of the form $-A(x/\\\\varepsilon):D^2 u^{\\\\varepsilon} = f$ subject to a homogeneous Dirichlet boundary condition. We show that the optimal rate for the convergence of $u^{\\\\varepsilon}$ to the solution of the corresponding homogenized problem in the $W^{1,p}$-norm is $\\\\mathcal{O}(\\\\varepsilon)$. We further obtain optimal gradient and Hessian bounds with correction terms taken into account in the $L^p$-norm. We then provide an explicit $c$-bad diffusion matrix and use it to perform various numerical experiments, which demonstrate the optimality of the obtained rates.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20M137121X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M137121X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在齐次Dirichlet边界条件下,研究了形式为$-A(x/\varepsilon):D^2 u^{\varepsilon} = f$的线性椭圆方程周期均匀化的最优收敛率。我们证明了$u^{\varepsilon}$收敛到W^{1,p}$-范数对应的齐次化问题的解的最优速率为$\mathcal{O}(\varepsilon)$。在L^p$-范数中考虑了校正项,进一步得到了最优梯度和Hessian界。然后,我们提供了一个显式的$c$-bad扩散矩阵,并用它进行了各种数值实验,证明了所得到的速率的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Convergence Rates for Elliptic Homogenization Problems in Nondivergence-Form: Analysis and Numerical Illustrations
We study optimal convergence rates in the periodic homogenization of linear elliptic equations of the form $-A(x/\varepsilon):D^2 u^{\varepsilon} = f$ subject to a homogeneous Dirichlet boundary condition. We show that the optimal rate for the convergence of $u^{\varepsilon}$ to the solution of the corresponding homogenized problem in the $W^{1,p}$-norm is $\mathcal{O}(\varepsilon)$. We further obtain optimal gradient and Hessian bounds with correction terms taken into account in the $L^p$-norm. We then provide an explicit $c$-bad diffusion matrix and use it to perform various numerical experiments, which demonstrate the optimality of the obtained rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信