费金定理的推广

J. A. Medina, N. Immerman
{"title":"费金定理的推广","authors":"J. A. Medina, N. Immerman","doi":"10.1109/LICS.1996.561298","DOIUrl":null,"url":null,"abstract":"Fagin's theorem characterizes NP as the set of decision problems that are expressible as second-order existential sentences, i.e., in the form (/spl exist//spl Pi/)/spl phi/, where /spl Pi/ is a new predicate symbol, and /spl phi/ is first-order. In the presence of a successor relation, /spl phi/ may be assumed to be universal, i.e., /spl phi//spl equiv/(/spl forall/x~)/spl alpha/ where /spl alpha/ is quantifier-free. The PCP theorem characterizes NP as the set of problems that may be proved in a way that can be checked by probabilistic verifiers using O(log n) random bits and reading O(1) bits of the proof: NP=PCP[log n, 1]. Combining these theorems, we show that every problem D/spl isin/NP may be transformed in polynomial time to an algebraic version D/spl circ//spl isin/NP such that D/spl circ/ consists of the set of structures satisfying a second-order existential formula of the form (/spl exist//spl Pi/)(R/spl tilde/x~)/spl alpha/ where R/spl tilde/ is a majority quantifier-the dual of the R quantifier in the definition of RP-and /spl alpha/ is quantifier-free. This is a generalization of Fagin's theorem and is equivalent to the PCP theorem.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A generalization of Fagin's theorem\",\"authors\":\"J. A. Medina, N. Immerman\",\"doi\":\"10.1109/LICS.1996.561298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fagin's theorem characterizes NP as the set of decision problems that are expressible as second-order existential sentences, i.e., in the form (/spl exist//spl Pi/)/spl phi/, where /spl Pi/ is a new predicate symbol, and /spl phi/ is first-order. In the presence of a successor relation, /spl phi/ may be assumed to be universal, i.e., /spl phi//spl equiv/(/spl forall/x~)/spl alpha/ where /spl alpha/ is quantifier-free. The PCP theorem characterizes NP as the set of problems that may be proved in a way that can be checked by probabilistic verifiers using O(log n) random bits and reading O(1) bits of the proof: NP=PCP[log n, 1]. Combining these theorems, we show that every problem D/spl isin/NP may be transformed in polynomial time to an algebraic version D/spl circ//spl isin/NP such that D/spl circ/ consists of the set of structures satisfying a second-order existential formula of the form (/spl exist//spl Pi/)(R/spl tilde/x~)/spl alpha/ where R/spl tilde/ is a majority quantifier-the dual of the R quantifier in the definition of RP-and /spl alpha/ is quantifier-free. This is a generalization of Fagin's theorem and is equivalent to the PCP theorem.\",\"PeriodicalId\":382663,\"journal\":{\"name\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1996.561298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

费金定理将NP描述为可表达为二阶存在句的决策问题集合,即(/spl exist//spl Pi/)/spl phi/,其中/spl Pi/是一个新的谓词符号,/spl phi/是一阶的。在后继关系存在的情况下,可以假定/spl phi/是全称的,即/spl phi//spl equiv/(/spl forall/x~)/spl alpha/其中/spl alpha/是无量词的。PCP定理将NP描述为可以被概率验证者使用O(log n)个随机比特和读取O(1)个证明比特来检验的问题集:NP=PCP[log n, 1]。结合这些定理,我们证明了每一个问题D/spl isin/NP都可以在多项式时间内转化为一个代数版本D/spl circ//spl isin/NP,使得D/spl circ/由满足形式为(/spl exist//spl Pi/)(R/spl tilde/x~)/spl alpha/的二阶存在公式的结构集组成,其中R/spl tilde/是多数量子——rp定义中R量子的对偶,/spl alpha/是无量子的。这是对费金定理的推广,等价于PCP定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of Fagin's theorem
Fagin's theorem characterizes NP as the set of decision problems that are expressible as second-order existential sentences, i.e., in the form (/spl exist//spl Pi/)/spl phi/, where /spl Pi/ is a new predicate symbol, and /spl phi/ is first-order. In the presence of a successor relation, /spl phi/ may be assumed to be universal, i.e., /spl phi//spl equiv/(/spl forall/x~)/spl alpha/ where /spl alpha/ is quantifier-free. The PCP theorem characterizes NP as the set of problems that may be proved in a way that can be checked by probabilistic verifiers using O(log n) random bits and reading O(1) bits of the proof: NP=PCP[log n, 1]. Combining these theorems, we show that every problem D/spl isin/NP may be transformed in polynomial time to an algebraic version D/spl circ//spl isin/NP such that D/spl circ/ consists of the set of structures satisfying a second-order existential formula of the form (/spl exist//spl Pi/)(R/spl tilde/x~)/spl alpha/ where R/spl tilde/ is a majority quantifier-the dual of the R quantifier in the definition of RP-and /spl alpha/ is quantifier-free. This is a generalization of Fagin's theorem and is equivalent to the PCP theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信