GTGR-Net:基于表面肌电图的手势识别图注意-时间网络

Xiaoxu Jia, Hongbo Wang, Jingjing Luo, Zhiping Lai, Xueze Zhang, Weiqi Zhang, Xiuhong Tang
{"title":"GTGR-Net:基于表面肌电图的手势识别图注意-时间网络","authors":"Xiaoxu Jia, Hongbo Wang, Jingjing Luo, Zhiping Lai, Xueze Zhang, Weiqi Zhang, Xiuhong Tang","doi":"10.1109/cniot55862.2022.00039","DOIUrl":null,"url":null,"abstract":"In this process of active rehabilitation assisted by hand rehabilitation robot, the patient’s hand motion intention, that is, the patient’s gesture recognition, plays an important role. Gesture recognition based on sEMG signal is a hot research topic. Due to the spatial correlation and time non-stationary of sEMG signal, this research topic has many difficulties. In order to solve this problem, we come up with a gesture recognition network GTGR-Net based on sEMG signal, which uses the combination of graph attention network and time convolution network to extract the spatiotemporal information of sEMG signal. We verify the effect of our algorithm on three public data sets and achieve good results, which is better than the other ways.","PeriodicalId":251734,"journal":{"name":"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GTGR-Net: Graph Attentional-Temporal Network for Surface-Electromyography-Based Gesture Recognition\",\"authors\":\"Xiaoxu Jia, Hongbo Wang, Jingjing Luo, Zhiping Lai, Xueze Zhang, Weiqi Zhang, Xiuhong Tang\",\"doi\":\"10.1109/cniot55862.2022.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this process of active rehabilitation assisted by hand rehabilitation robot, the patient’s hand motion intention, that is, the patient’s gesture recognition, plays an important role. Gesture recognition based on sEMG signal is a hot research topic. Due to the spatial correlation and time non-stationary of sEMG signal, this research topic has many difficulties. In order to solve this problem, we come up with a gesture recognition network GTGR-Net based on sEMG signal, which uses the combination of graph attention network and time convolution network to extract the spatiotemporal information of sEMG signal. We verify the effect of our algorithm on three public data sets and achieve good results, which is better than the other ways.\",\"PeriodicalId\":251734,\"journal\":{\"name\":\"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cniot55862.2022.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Computing, Networks and Internet of Things (CNIOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cniot55862.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在手部康复机器人辅助的主动康复过程中,患者的手部运动意图,即患者的手势识别,起着重要的作用。基于表面肌电信号的手势识别是一个研究热点。由于表面肌电信号的空间相关性和时间非平稳性,本课题的研究存在诸多困难。为了解决这一问题,我们提出了一种基于表面肌电信号的手势识别网络GTGR-Net,该网络采用图注意网络和时间卷积网络相结合的方法提取表面肌电信号的时空信息。我们在三个公共数据集上验证了算法的效果,取得了较好的效果,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GTGR-Net: Graph Attentional-Temporal Network for Surface-Electromyography-Based Gesture Recognition
In this process of active rehabilitation assisted by hand rehabilitation robot, the patient’s hand motion intention, that is, the patient’s gesture recognition, plays an important role. Gesture recognition based on sEMG signal is a hot research topic. Due to the spatial correlation and time non-stationary of sEMG signal, this research topic has many difficulties. In order to solve this problem, we come up with a gesture recognition network GTGR-Net based on sEMG signal, which uses the combination of graph attention network and time convolution network to extract the spatiotemporal information of sEMG signal. We verify the effect of our algorithm on three public data sets and achieve good results, which is better than the other ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信