具有相关CSI噪声的分散广播信道鲁棒正则化ZF

Qianrui Li, Paul de Kerret, D. Gesbert, N. Gresset
{"title":"具有相关CSI噪声的分散广播信道鲁棒正则化ZF","authors":"Qianrui Li, Paul de Kerret, D. Gesbert, N. Gresset","doi":"10.1109/ALLERTON.2015.7447023","DOIUrl":null,"url":null,"abstract":"We consider in this work the Distributed Channel State Information (DCSI) Broadcast Channel (BC) setting, in which the various Transmitters (TXs) compute elements of the precoder based on their individual estimates of the global multiuser channel matrix. Previous works relative to the DCSI setting assume the estimation errors at different TXs to be uncorrelated, while we consider in contrast in this work that the CSI noises can be correlated. This generalization bridges the gap between the fully distributed and the centralized setting, and offers an avenue to analyze partially centralized networks. In addition, we generalize the regularized Zero Forcing (ZF) precoding by letting each TX use a different regularization coefficient. Building upon random matrix theory tools, we obtain a deterministic equivalent for the rate achieved in the large system limit from which we can optimize the regularization coefficients at different TXs. This extended precoding scheme in which each TX applies the optimal regularization coefficient is denoted as “DCSI Regularized ZF” and we show by numerical simulations that it allows to significantly reduce the negative impact of the distributed CSI configuration and is robust to the distribution of CSI quality level across all TXs.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Robust regularized ZF in decentralized Broadcast Channel with correlated CSI noise\",\"authors\":\"Qianrui Li, Paul de Kerret, D. Gesbert, N. Gresset\",\"doi\":\"10.1109/ALLERTON.2015.7447023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider in this work the Distributed Channel State Information (DCSI) Broadcast Channel (BC) setting, in which the various Transmitters (TXs) compute elements of the precoder based on their individual estimates of the global multiuser channel matrix. Previous works relative to the DCSI setting assume the estimation errors at different TXs to be uncorrelated, while we consider in contrast in this work that the CSI noises can be correlated. This generalization bridges the gap between the fully distributed and the centralized setting, and offers an avenue to analyze partially centralized networks. In addition, we generalize the regularized Zero Forcing (ZF) precoding by letting each TX use a different regularization coefficient. Building upon random matrix theory tools, we obtain a deterministic equivalent for the rate achieved in the large system limit from which we can optimize the regularization coefficients at different TXs. This extended precoding scheme in which each TX applies the optimal regularization coefficient is denoted as “DCSI Regularized ZF” and we show by numerical simulations that it allows to significantly reduce the negative impact of the distributed CSI configuration and is robust to the distribution of CSI quality level across all TXs.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在这项工作中,我们考虑了分布式信道状态信息(DCSI)广播信道(BC)设置,其中各种发射机(TXs)基于它们对全局多用户信道矩阵的单独估计来计算预编码器的元素。之前关于DCSI设置的工作假设不同TXs的估计误差是不相关的,而我们在这项工作中相反地认为CSI噪声是可以相关的。这种概括弥合了完全分布式和集中式设置之间的差距,并提供了分析部分集中式网络的途径。此外,我们通过让每个TX使用不同的正则化系数来推广正则化零强制(ZF)预编码。在随机矩阵理论工具的基础上,我们得到了在大系统极限下达到的速率的确定性等价,由此我们可以优化不同TXs下的正则化系数。这种扩展的预编码方案,其中每个TX应用最优正则化系数,被表示为“DCSI正则化ZF”,我们通过数值模拟表明,它允许显着减少分布式CSI配置的负面影响,并且对CSI质量水平在所有TX中的分布具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust regularized ZF in decentralized Broadcast Channel with correlated CSI noise
We consider in this work the Distributed Channel State Information (DCSI) Broadcast Channel (BC) setting, in which the various Transmitters (TXs) compute elements of the precoder based on their individual estimates of the global multiuser channel matrix. Previous works relative to the DCSI setting assume the estimation errors at different TXs to be uncorrelated, while we consider in contrast in this work that the CSI noises can be correlated. This generalization bridges the gap between the fully distributed and the centralized setting, and offers an avenue to analyze partially centralized networks. In addition, we generalize the regularized Zero Forcing (ZF) precoding by letting each TX use a different regularization coefficient. Building upon random matrix theory tools, we obtain a deterministic equivalent for the rate achieved in the large system limit from which we can optimize the regularization coefficients at different TXs. This extended precoding scheme in which each TX applies the optimal regularization coefficient is denoted as “DCSI Regularized ZF” and we show by numerical simulations that it allows to significantly reduce the negative impact of the distributed CSI configuration and is robust to the distribution of CSI quality level across all TXs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信