随机优化下高斯分布的信息几何

Luigi Malagò, Giovanni Pistone
{"title":"随机优化下高斯分布的信息几何","authors":"Luigi Malagò, Giovanni Pistone","doi":"10.1145/2725494.2725510","DOIUrl":null,"url":null,"abstract":"We study the optimization of a continuous function by its stochastic relaxation, i.e., the optimization of the expected value of the function itself with respect to a density in a statistical model. We focus on gradient descent techniques applied to models from the exponential family and in particular on the multivariate Gaussian distribution. From the theory of the exponential family, we reparametrize the Gaussian distribution using natural and expectation parameters, and we derive formulas for natural gradients in both parameterizations. We discuss some advantages of the natural parameterization for the identification of sub-models in the Gaussian distribution based on conditional independence assumptions among variables. Gaussian distributions are widely used in stochastic optimization and in particular in model-based Evolutionary Computation, as in Estimation of Distribution Algorithms and Evolutionary Strategies. By studying natural gradient flows over Gaussian distributions our analysis and results directly apply to the study of CMA-ES and NES algorithms.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Information Geometry of the Gaussian Distribution in View of Stochastic Optimization\",\"authors\":\"Luigi Malagò, Giovanni Pistone\",\"doi\":\"10.1145/2725494.2725510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the optimization of a continuous function by its stochastic relaxation, i.e., the optimization of the expected value of the function itself with respect to a density in a statistical model. We focus on gradient descent techniques applied to models from the exponential family and in particular on the multivariate Gaussian distribution. From the theory of the exponential family, we reparametrize the Gaussian distribution using natural and expectation parameters, and we derive formulas for natural gradients in both parameterizations. We discuss some advantages of the natural parameterization for the identification of sub-models in the Gaussian distribution based on conditional independence assumptions among variables. Gaussian distributions are widely used in stochastic optimization and in particular in model-based Evolutionary Computation, as in Estimation of Distribution Algorithms and Evolutionary Strategies. By studying natural gradient flows over Gaussian distributions our analysis and results directly apply to the study of CMA-ES and NES algorithms.\",\"PeriodicalId\":112331,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2725494.2725510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

我们研究了连续函数的随机松弛的最优化问题,即统计模型中函数本身期望值相对于密度的最优化问题。我们专注于梯度下降技术应用于指数族模型,特别是多元高斯分布。从指数族理论出发,利用自然参数和期望参数对高斯分布进行了重新参数化,并推导了两种参数化下的自然梯度公式。讨论了基于变量间条件独立假设的高斯分布子模型自然参数化识别的优点。高斯分布广泛应用于随机优化,特别是基于模型的进化计算,如分布估计算法和进化策略。通过研究高斯分布上的自然梯度流,我们的分析和结果直接适用于CMA-ES和NES算法的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Geometry of the Gaussian Distribution in View of Stochastic Optimization
We study the optimization of a continuous function by its stochastic relaxation, i.e., the optimization of the expected value of the function itself with respect to a density in a statistical model. We focus on gradient descent techniques applied to models from the exponential family and in particular on the multivariate Gaussian distribution. From the theory of the exponential family, we reparametrize the Gaussian distribution using natural and expectation parameters, and we derive formulas for natural gradients in both parameterizations. We discuss some advantages of the natural parameterization for the identification of sub-models in the Gaussian distribution based on conditional independence assumptions among variables. Gaussian distributions are widely used in stochastic optimization and in particular in model-based Evolutionary Computation, as in Estimation of Distribution Algorithms and Evolutionary Strategies. By studying natural gradient flows over Gaussian distributions our analysis and results directly apply to the study of CMA-ES and NES algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信