一种用于测量贴壁细胞膜运输的微孔装置

Y. Okada, M. Tsugane, H. Suzuki
{"title":"一种用于测量贴壁细胞膜运输的微孔装置","authors":"Y. Okada, M. Tsugane, H. Suzuki","doi":"10.1109/MEMSYS.2015.7050984","DOIUrl":null,"url":null,"abstract":"We developed the microwell device for measurement of membrane transport of single adherent cells. As the cells in a population (e.g., tumor) is inevitably heterogeneous, a technique to measure the transport activities at a single-cell level is needed. When adherent cells were cultured on the microwells with ~10 μm diameter, they spread over the opening to form the closed picoliter space. Thus, molecules exported from cells accumulate in such a space and be detected by fluorescence imaging. In this report, we show that, by employing horizontal microwell design, materials exported from the cell membrane can be visualized without overlapping with the cell, increasing the S/N ratio of the fluorescence signal. Efflux of the cancer drug transported by the multidrug resistance protein was detected.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A microwell device for measurement of membrane transport of adherent cells\",\"authors\":\"Y. Okada, M. Tsugane, H. Suzuki\",\"doi\":\"10.1109/MEMSYS.2015.7050984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed the microwell device for measurement of membrane transport of single adherent cells. As the cells in a population (e.g., tumor) is inevitably heterogeneous, a technique to measure the transport activities at a single-cell level is needed. When adherent cells were cultured on the microwells with ~10 μm diameter, they spread over the opening to form the closed picoliter space. Thus, molecules exported from cells accumulate in such a space and be detected by fluorescence imaging. In this report, we show that, by employing horizontal microwell design, materials exported from the cell membrane can be visualized without overlapping with the cell, increasing the S/N ratio of the fluorescence signal. Efflux of the cancer drug transported by the multidrug resistance protein was detected.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7050984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研制了微孔装置,用于测量单个贴壁细胞的膜转运。由于群体中的细胞(如肿瘤)不可避免地具有异质性,因此需要在单细胞水平上测量运输活动的技术。当贴壁细胞在直径约10 μm的微孔中培养时,它们在开口上扩散形成封闭的皮升空间。因此,从细胞输出的分子聚集在这样的空间中,并被荧光成像检测到。在这篇报道中,我们展示了通过水平微孔设计,从细胞膜输出的材料可以可视化而不与细胞重叠,提高了荧光信号的信噪比。检测了多药耐药蛋白转运的肿瘤药物外排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A microwell device for measurement of membrane transport of adherent cells
We developed the microwell device for measurement of membrane transport of single adherent cells. As the cells in a population (e.g., tumor) is inevitably heterogeneous, a technique to measure the transport activities at a single-cell level is needed. When adherent cells were cultured on the microwells with ~10 μm diameter, they spread over the opening to form the closed picoliter space. Thus, molecules exported from cells accumulate in such a space and be detected by fluorescence imaging. In this report, we show that, by employing horizontal microwell design, materials exported from the cell membrane can be visualized without overlapping with the cell, increasing the S/N ratio of the fluorescence signal. Efflux of the cancer drug transported by the multidrug resistance protein was detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信