概率对话建模

Oliver Lemon, Prashant Parikh, S. Peters
{"title":"概率对话建模","authors":"Oliver Lemon, Prashant Parikh, S. Peters","doi":"10.3115/1118121.1118138","DOIUrl":null,"url":null,"abstract":"We show how Bayesian networks and related probabilistic methods provide an efficient way of capturing the complex balancing of different factors that determine interpretation and generation in dialogue. As a case study, we show how a probabilistic approach can be used to model anaphora resolution in dialogue.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Probabilistic Dialogue Modelling\",\"authors\":\"Oliver Lemon, Prashant Parikh, S. Peters\",\"doi\":\"10.3115/1118121.1118138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how Bayesian networks and related probabilistic methods provide an efficient way of capturing the complex balancing of different factors that determine interpretation and generation in dialogue. As a case study, we show how a probabilistic approach can be used to model anaphora resolution in dialogue.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1118121.1118138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118121.1118138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们展示了贝叶斯网络和相关的概率方法如何提供一种有效的方法来捕获决定对话中解释和生成的不同因素的复杂平衡。作为一个案例研究,我们展示了如何使用概率方法来模拟对话中的回指解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Dialogue Modelling
We show how Bayesian networks and related probabilistic methods provide an efficient way of capturing the complex balancing of different factors that determine interpretation and generation in dialogue. As a case study, we show how a probabilistic approach can be used to model anaphora resolution in dialogue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信