{"title":"扭曲k理论的Weibel猜想","authors":"J. Stapleton","doi":"10.2140/akt.2020.5.621","DOIUrl":null,"url":null,"abstract":"We prove Weibel's conjecture for twisted $K$-theory when twisting by a smooth proper connective dg-algebra. Our main contribution is showing we can kill a negative twisted $K$-theory class using a projective birational morphism (in the same twisted setting). We extend the vanishing result to relative twisted $K$-theory of a smooth affine morphism and describe counter examples to some similar extensions.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weibel’s conjecture for twisted K-theory\",\"authors\":\"J. Stapleton\",\"doi\":\"10.2140/akt.2020.5.621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove Weibel's conjecture for twisted $K$-theory when twisting by a smooth proper connective dg-algebra. Our main contribution is showing we can kill a negative twisted $K$-theory class using a projective birational morphism (in the same twisted setting). We extend the vanishing result to relative twisted $K$-theory of a smooth affine morphism and describe counter examples to some similar extensions.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2020.5.621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2020.5.621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove Weibel's conjecture for twisted $K$-theory when twisting by a smooth proper connective dg-algebra. Our main contribution is showing we can kill a negative twisted $K$-theory class using a projective birational morphism (in the same twisted setting). We extend the vanishing result to relative twisted $K$-theory of a smooth affine morphism and describe counter examples to some similar extensions.