解释击键以确定人类情绪

Bernard Aldrich, Hilda Goins, Mohd Anwar
{"title":"解释击键以确定人类情绪","authors":"Bernard Aldrich, Hilda Goins, Mohd Anwar","doi":"10.1109/TransAI51903.2021.00028","DOIUrl":null,"url":null,"abstract":"The human state of mind can be reflected in interactions with computers, such as the time taken to type a word, the number of times that a correction is made, the average time taken to press a set of keys, etc. In this research, we developed an application that captures keystroke-based human-computer interactions while gathering user mood (pleasant vs. unpleasant) information utilizing a pre-established survey instrument – the Brief Mood Introspection Survey (BMIS). Using keystroke-based features and saliency measurements of the features, we constructed models to differentiate between pleasant and unpleasant moods. Once unpleasant moods are detected, possible interventions can be applied. For unpleasant mood detection, generalized neural network (GRNN), probabilistic neural network (PNN), and Levenberg-Marquardt neural network (LMNN) algorithms provided the best F1-scores, whereas decision tree (DT) algorithm provided the best recall score.","PeriodicalId":426766,"journal":{"name":"2021 Third International Conference on Transdisciplinary AI (TransAI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpreting Keystrokes to Ascertain Human Mood\",\"authors\":\"Bernard Aldrich, Hilda Goins, Mohd Anwar\",\"doi\":\"10.1109/TransAI51903.2021.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human state of mind can be reflected in interactions with computers, such as the time taken to type a word, the number of times that a correction is made, the average time taken to press a set of keys, etc. In this research, we developed an application that captures keystroke-based human-computer interactions while gathering user mood (pleasant vs. unpleasant) information utilizing a pre-established survey instrument – the Brief Mood Introspection Survey (BMIS). Using keystroke-based features and saliency measurements of the features, we constructed models to differentiate between pleasant and unpleasant moods. Once unpleasant moods are detected, possible interventions can be applied. For unpleasant mood detection, generalized neural network (GRNN), probabilistic neural network (PNN), and Levenberg-Marquardt neural network (LMNN) algorithms provided the best F1-scores, whereas decision tree (DT) algorithm provided the best recall score.\",\"PeriodicalId\":426766,\"journal\":{\"name\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TransAI51903.2021.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI51903.2021.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人类的心理状态可以在与计算机的交互中反映出来,比如输入一个单词所花费的时间、更正的次数、按一组键所花费的平均时间等等。在这项研究中,我们开发了一个应用程序,它可以捕捉基于按键的人机交互,同时利用预先建立的调查工具-简短情绪内省调查(BMIS)收集用户情绪(愉快与不愉快)信息。使用基于击键的特征和特征的显著性测量,我们构建了模型来区分愉快和不愉快的情绪。一旦发现不愉快的情绪,就可以采取可能的干预措施。对于不愉快情绪的检测,广义神经网络(GRNN)、概率神经网络(PNN)和Levenberg-Marquardt神经网络(LMNN)算法提供了最好的f1得分,而决策树(DT)算法提供了最好的回忆得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting Keystrokes to Ascertain Human Mood
The human state of mind can be reflected in interactions with computers, such as the time taken to type a word, the number of times that a correction is made, the average time taken to press a set of keys, etc. In this research, we developed an application that captures keystroke-based human-computer interactions while gathering user mood (pleasant vs. unpleasant) information utilizing a pre-established survey instrument – the Brief Mood Introspection Survey (BMIS). Using keystroke-based features and saliency measurements of the features, we constructed models to differentiate between pleasant and unpleasant moods. Once unpleasant moods are detected, possible interventions can be applied. For unpleasant mood detection, generalized neural network (GRNN), probabilistic neural network (PNN), and Levenberg-Marquardt neural network (LMNN) algorithms provided the best F1-scores, whereas decision tree (DT) algorithm provided the best recall score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信