Anastasios Papagiannis, Giorgos Saloustros, Giorgos Xanthakis, Giorgos Kalaentzis, Pilar González-Férez, A. Bilas
{"title":"Kreon","authors":"Anastasios Papagiannis, Giorgos Saloustros, Giorgos Xanthakis, Giorgos Kalaentzis, Pilar González-Férez, A. Bilas","doi":"10.1145/3418414","DOIUrl":null,"url":null,"abstract":"Persistent key-value stores have emerged as a main component in the data access path of modern data processing systems. However, they exhibit high CPU and I/O overhead. Nowadays, due to power limitations, it is important to reduce CPU overheads for data processing. In this article, we propose Kreon, a key-value store that targets servers with flash-based storage, where CPU overhead and I/O amplification are more significant bottlenecks compared to I/O randomness. We first observe that two significant sources of overhead in key-value stores are: (a) The use of compaction in Log-Structured Merge-Trees (LSM-Tree) that constantly perform merging and sorting of large data segments and (b) the use of an I/O cache to access devices, which incurs overhead even for data that reside in memory. To avoid these, Kreon performs data movement from level to level by using partial reorganization instead of full data reorganization via the use of a full index per-level. Kreon uses memory-mapped I/O via a custom kernel path to avoid a user-space cache. For a large dataset, Kreon reduces CPU cycles/op by up to 5.8×, reduces I/O amplification for inserts by up to 4.61×, and increases insert ops/s by up to 5.3×, compared to RocksDB.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3418414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

持久键值存储已成为现代数据处理系统中数据访问路径的主要组成部分。然而,它们表现出很高的CPU和I/O开销。如今,由于功率限制,降低数据处理的CPU开销非常重要。在本文中,我们提出了Kreon,这是一种键值存储,目标服务器使用基于闪存的存储,与I/O随机性相比,CPU开销和I/O放大是更重要的瓶颈。我们首先观察到键值存储开销的两个重要来源是:(a)在日志结构合并树(LSM-Tree)中使用压缩,它不断地执行大型数据段的合并和排序;(b)使用I/O缓存来访问设备,这甚至会对驻留在内存中的数据产生开销。为了避免这些问题,Kreon通过使用部分重组而不是通过使用每个级别的完整索引来完成数据重组,从而在级别之间执行数据移动。Kreon通过自定义内核路径使用内存映射I/O,以避免用户空间缓存。对于大型数据集,与RocksDB相比,Kreon将CPU周期/op降低了5.8倍,将插入的I/O放大降低了4.61倍,并将插入ops/s提高了5.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kreon
Persistent key-value stores have emerged as a main component in the data access path of modern data processing systems. However, they exhibit high CPU and I/O overhead. Nowadays, due to power limitations, it is important to reduce CPU overheads for data processing. In this article, we propose Kreon, a key-value store that targets servers with flash-based storage, where CPU overhead and I/O amplification are more significant bottlenecks compared to I/O randomness. We first observe that two significant sources of overhead in key-value stores are: (a) The use of compaction in Log-Structured Merge-Trees (LSM-Tree) that constantly perform merging and sorting of large data segments and (b) the use of an I/O cache to access devices, which incurs overhead even for data that reside in memory. To avoid these, Kreon performs data movement from level to level by using partial reorganization instead of full data reorganization via the use of a full index per-level. Kreon uses memory-mapped I/O via a custom kernel path to avoid a user-space cache. For a large dataset, Kreon reduces CPU cycles/op by up to 5.8×, reduces I/O amplification for inserts by up to 4.61×, and increases insert ops/s by up to 5.3×, compared to RocksDB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信