{"title":"提高小提琴演奏机器人音质的研究","authors":"Wonse Jo, Hyeonjun Park, Bumjoo Lee, Dong Han Kim","doi":"10.1109/ICARA.2015.7081145","DOIUrl":null,"url":null,"abstract":"This paper introduces a violin playing robot that imitates the playing technique of human. A violinist learns how to play through an endless practice. A bowing velocity, bowing force, and sound point are important factors in determining the sound quality. Thus, in this paper, the sound quality has been analyzed in the variable speed using the violin playing robot, where an industrial vertical multi-joint robot arm is used. Fast Fourier transform is used to convert the played sound using a 32-bit microcontroller, and then the result is compared to the natural frequency of the G string. In order to measure the contact force of the violin bow, a two-axis load cell is produced and mounted on the bow handle. This paper also studies the impact speed of the bow on the violin. Lastly, this paper concludes with introducing the violin robot system using auditory feedback.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A study on improving sound quality of violin playing robot\",\"authors\":\"Wonse Jo, Hyeonjun Park, Bumjoo Lee, Dong Han Kim\",\"doi\":\"10.1109/ICARA.2015.7081145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a violin playing robot that imitates the playing technique of human. A violinist learns how to play through an endless practice. A bowing velocity, bowing force, and sound point are important factors in determining the sound quality. Thus, in this paper, the sound quality has been analyzed in the variable speed using the violin playing robot, where an industrial vertical multi-joint robot arm is used. Fast Fourier transform is used to convert the played sound using a 32-bit microcontroller, and then the result is compared to the natural frequency of the G string. In order to measure the contact force of the violin bow, a two-axis load cell is produced and mounted on the bow handle. This paper also studies the impact speed of the bow on the violin. Lastly, this paper concludes with introducing the violin robot system using auditory feedback.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on improving sound quality of violin playing robot
This paper introduces a violin playing robot that imitates the playing technique of human. A violinist learns how to play through an endless practice. A bowing velocity, bowing force, and sound point are important factors in determining the sound quality. Thus, in this paper, the sound quality has been analyzed in the variable speed using the violin playing robot, where an industrial vertical multi-joint robot arm is used. Fast Fourier transform is used to convert the played sound using a 32-bit microcontroller, and then the result is compared to the natural frequency of the G string. In order to measure the contact force of the violin bow, a two-axis load cell is produced and mounted on the bow handle. This paper also studies the impact speed of the bow on the violin. Lastly, this paper concludes with introducing the violin robot system using auditory feedback.