D. Acosta-Lech, T. Houck, B. Mchale, M. Misch, Koby Sugihara
{"title":"非晶金属磁芯在高磁化速率下的多脉冲性能","authors":"D. Acosta-Lech, T. Houck, B. Mchale, M. Misch, Koby Sugihara","doi":"10.1109/ppps34859.2019.9009751","DOIUrl":null,"url":null,"abstract":"Amorphous metal magnetic cores are essential in developing pulse power systems due to their high magnetic saturation value. In order to operate in multipulse mode, the magnetic cores must provide enough volt-seconds before reaching saturation. They must prove to be reliable and to maintain little to no load loss during the high rate pulses. This paper presents the efforts to characterize the performance of various Metglas® cores at high magnetization rates and to use this data to develop models for simulation.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Pulse Performace of Amorphous Metal Magnetic Cores at High Magnetization Rates\",\"authors\":\"D. Acosta-Lech, T. Houck, B. Mchale, M. Misch, Koby Sugihara\",\"doi\":\"10.1109/ppps34859.2019.9009751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amorphous metal magnetic cores are essential in developing pulse power systems due to their high magnetic saturation value. In order to operate in multipulse mode, the magnetic cores must provide enough volt-seconds before reaching saturation. They must prove to be reliable and to maintain little to no load loss during the high rate pulses. This paper presents the efforts to characterize the performance of various Metglas® cores at high magnetization rates and to use this data to develop models for simulation.\",\"PeriodicalId\":103240,\"journal\":{\"name\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ppps34859.2019.9009751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ppps34859.2019.9009751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Pulse Performace of Amorphous Metal Magnetic Cores at High Magnetization Rates
Amorphous metal magnetic cores are essential in developing pulse power systems due to their high magnetic saturation value. In order to operate in multipulse mode, the magnetic cores must provide enough volt-seconds before reaching saturation. They must prove to be reliable and to maintain little to no load loss during the high rate pulses. This paper presents the efforts to characterize the performance of various Metglas® cores at high magnetization rates and to use this data to develop models for simulation.