用于数据挖掘的级联GP模型

P. Lichodzijewski, M. Heywood, A. N. Zincir-Heywood
{"title":"用于数据挖掘的级联GP模型","authors":"P. Lichodzijewski, M. Heywood, A. N. Zincir-Heywood","doi":"10.1109/CEC.2004.1331178","DOIUrl":null,"url":null,"abstract":"The cascade architecture for incremental learning is demonstrated within the context of genetic programming. Such a scheme provides the basis for building steadily more complex models until a desired degree of accuracy is reached. The architecture is demonstrated for several data mining datasets. Efficient training on standard computing platforms is retained using the RSS-DSS algorithm for stochastically sampling datasets in proportion to exemplar 'difficulty' and 'age'. Finally, the ensuing empirical study provides the basis for recommending the utility of sum square cost functions in the datasets considered.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cascaded GP models for data mining\",\"authors\":\"P. Lichodzijewski, M. Heywood, A. N. Zincir-Heywood\",\"doi\":\"10.1109/CEC.2004.1331178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cascade architecture for incremental learning is demonstrated within the context of genetic programming. Such a scheme provides the basis for building steadily more complex models until a desired degree of accuracy is reached. The architecture is demonstrated for several data mining datasets. Efficient training on standard computing platforms is retained using the RSS-DSS algorithm for stochastically sampling datasets in proportion to exemplar 'difficulty' and 'age'. Finally, the ensuing empirical study provides the basis for recommending the utility of sum square cost functions in the datasets considered.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在遗传规划的背景下,演示了用于增量学习的级联架构。这种方案为稳定地建立更复杂的模型提供了基础,直到达到所需的精度。该体系结构针对几个数据挖掘数据集进行了演示。在标准计算平台上使用RSS-DSS算法对随机抽样数据集按样本“难度”和“年龄”成比例进行有效训练。最后,随后的实证研究为推荐在考虑的数据集中使用平方和成本函数提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cascaded GP models for data mining
The cascade architecture for incremental learning is demonstrated within the context of genetic programming. Such a scheme provides the basis for building steadily more complex models until a desired degree of accuracy is reached. The architecture is demonstrated for several data mining datasets. Efficient training on standard computing platforms is retained using the RSS-DSS algorithm for stochastically sampling datasets in proportion to exemplar 'difficulty' and 'age'. Finally, the ensuing empirical study provides the basis for recommending the utility of sum square cost functions in the datasets considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信