C. Sander, R. Raz, P. Ruther, O. Paul, T. Kaufmann, M. Cornils, M. Vecchi
{"title":"CMOS技术中的完全对称垂直霍尔器件","authors":"C. Sander, R. Raz, P. Ruther, O. Paul, T. Kaufmann, M. Cornils, M. Vecchi","doi":"10.1109/ICSENS.2013.6688286","DOIUrl":null,"url":null,"abstract":"We present a novel CMOS-integrated, vertical Hall sensor (VHS) with optimized symmetry for the measurement of in-plane magnetic field components. Due to the junction field effect, conventional five-contact VHS (5CVHS) suffer from considerable offsets caused by their inherent electrical asymmetry under contact permutations. The novel device achieves a higher degree of symmetry by the appropriate connection of four identical three-contact elements. As a result, with a bias voltage of 3.5 V and after current switching a mean residual offset of 2.5 μV with a standard deviation of 33.8 μV is achieved among 45 samples on an 8-inch wafer. This represents an improvement by a factor of more than 4 over 5CVHS fabricated on the same wafer. In addition, the power consumption is reduced by 47%.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Fully symmetric vertical hall devices in CMOS technology\",\"authors\":\"C. Sander, R. Raz, P. Ruther, O. Paul, T. Kaufmann, M. Cornils, M. Vecchi\",\"doi\":\"10.1109/ICSENS.2013.6688286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel CMOS-integrated, vertical Hall sensor (VHS) with optimized symmetry for the measurement of in-plane magnetic field components. Due to the junction field effect, conventional five-contact VHS (5CVHS) suffer from considerable offsets caused by their inherent electrical asymmetry under contact permutations. The novel device achieves a higher degree of symmetry by the appropriate connection of four identical three-contact elements. As a result, with a bias voltage of 3.5 V and after current switching a mean residual offset of 2.5 μV with a standard deviation of 33.8 μV is achieved among 45 samples on an 8-inch wafer. This represents an improvement by a factor of more than 4 over 5CVHS fabricated on the same wafer. In addition, the power consumption is reduced by 47%.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully symmetric vertical hall devices in CMOS technology
We present a novel CMOS-integrated, vertical Hall sensor (VHS) with optimized symmetry for the measurement of in-plane magnetic field components. Due to the junction field effect, conventional five-contact VHS (5CVHS) suffer from considerable offsets caused by their inherent electrical asymmetry under contact permutations. The novel device achieves a higher degree of symmetry by the appropriate connection of four identical three-contact elements. As a result, with a bias voltage of 3.5 V and after current switching a mean residual offset of 2.5 μV with a standard deviation of 33.8 μV is achieved among 45 samples on an 8-inch wafer. This represents an improvement by a factor of more than 4 over 5CVHS fabricated on the same wafer. In addition, the power consumption is reduced by 47%.