在近似动态规划中识别有效策略:超越回归

M. Maxwell, S. Henderson, Huseyin Topaloglu
{"title":"在近似动态规划中识别有效策略:超越回归","authors":"M. Maxwell, S. Henderson, Huseyin Topaloglu","doi":"10.1109/WSC.2010.5679084","DOIUrl":null,"url":null,"abstract":"Dynamic programming formulations may be used to solve for optimal policies in Markov decision processes. Due to computational complexity dynamic programs must often be solved approximately. We consider the case of a tunable approximation architecture used in lieu of computing true value functions. The standard methodology advocates tuning the approximation architecture via sample path information and regression to get a good fit to the true value function. We provide an example which shows that this approach may unnecessarily lead to poorly performing policies and suggest direct search methods to find better performing value function approximations. We illustrate this concept with an application from ambulance redeployment.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying effective policies in approximate dynamic programming: Beyond regression\",\"authors\":\"M. Maxwell, S. Henderson, Huseyin Topaloglu\",\"doi\":\"10.1109/WSC.2010.5679084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic programming formulations may be used to solve for optimal policies in Markov decision processes. Due to computational complexity dynamic programs must often be solved approximately. We consider the case of a tunable approximation architecture used in lieu of computing true value functions. The standard methodology advocates tuning the approximation architecture via sample path information and regression to get a good fit to the true value function. We provide an example which shows that this approach may unnecessarily lead to poorly performing policies and suggest direct search methods to find better performing value function approximations. We illustrate this concept with an application from ambulance redeployment.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5679084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

动态规划公式可用于求解马尔可夫决策过程中的最优策略。由于计算的复杂性,动态规划往往必须近似求解。我们考虑使用可调近似体系结构代替计算真值函数的情况。标准方法主张通过样本路径信息和回归来调整近似体系结构,以获得与真值函数的良好拟合。我们提供了一个例子,表明这种方法可能不必要地导致性能较差的策略,并建议直接搜索方法来找到性能更好的值函数近似。我们用一个救护车重新部署的应用程序来说明这个概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying effective policies in approximate dynamic programming: Beyond regression
Dynamic programming formulations may be used to solve for optimal policies in Markov decision processes. Due to computational complexity dynamic programs must often be solved approximately. We consider the case of a tunable approximation architecture used in lieu of computing true value functions. The standard methodology advocates tuning the approximation architecture via sample path information and regression to get a good fit to the true value function. We provide an example which shows that this approach may unnecessarily lead to poorly performing policies and suggest direct search methods to find better performing value function approximations. We illustrate this concept with an application from ambulance redeployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信