在圆对称函数上

L. Koczan, P. Zaprawa
{"title":"在圆对称函数上","authors":"L. Koczan, P. Zaprawa","doi":"10.7862/RF.2014.6","DOIUrl":null,"url":null,"abstract":"Let D C and 02 D. A set D is circularly symmetric if for each % 2 R + a set D\\f 2 C : j j = %g is one of three forms: an empty set, a whole circle, a curve symmetric with respect to the real axis containing %. A function f 2 A is circularly symmetric if f() is a circularly symmetric set. The class of all such functions we denote by X. The above denitions were given by Jenkins in (2). In this paper besides X we also consider some of its subclasses: X( ) and Y \\S consisting of functions in X with the second coecient xed and univalent starlike functions respectively. According to the suggestion, in Abstract we add one more paragraph at the end of the section: For X( ) we nd the radii of starlikeness, starlikeness of order , univalence and local univalence. We also obtain some distortion results. For Y\\S we discuss some coecient problems, among others the Fekete- Szego ineqalities.","PeriodicalId":345762,"journal":{"name":"Journal of Mathematics and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On circularly symmetric functions\",\"authors\":\"L. Koczan, P. Zaprawa\",\"doi\":\"10.7862/RF.2014.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D C and 02 D. A set D is circularly symmetric if for each % 2 R + a set D\\\\f 2 C : j j = %g is one of three forms: an empty set, a whole circle, a curve symmetric with respect to the real axis containing %. A function f 2 A is circularly symmetric if f() is a circularly symmetric set. The class of all such functions we denote by X. The above denitions were given by Jenkins in (2). In this paper besides X we also consider some of its subclasses: X( ) and Y \\\\S consisting of functions in X with the second coecient xed and univalent starlike functions respectively. According to the suggestion, in Abstract we add one more paragraph at the end of the section: For X( ) we nd the radii of starlikeness, starlikeness of order , univalence and local univalence. We also obtain some distortion results. For Y\\\\S we discuss some coecient problems, among others the Fekete- Szego ineqalities.\",\"PeriodicalId\":345762,\"journal\":{\"name\":\"Journal of Mathematics and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7862/RF.2014.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/RF.2014.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设D C和02d,如果对于每个% 2r +一个集合D\f 2c: j j = %g是三种形式之一,则集合D是圆对称的:一个空集合,一个完整的圆,一条关于包含%的实轴对称的曲线。如果f()是一个圆对称集合,则函数f2a是圆对称的。上面的定义是Jenkins在(2)中给出的。本文除了考虑X之外,还考虑了它的一些子类:X()和Y \S,分别由X中的二系数有价星形函数和一元星形函数组成。根据这一建议,我们在摘要部分的末尾增加了一段:对于X(),我们得到了星形半径、有序星形半径、一价星形半径和局部一价星形半径。我们也得到了一些失真的结果。对于Y\S,我们讨论了一些系数问题,其中包括Fekete- Szego不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On circularly symmetric functions
Let D C and 02 D. A set D is circularly symmetric if for each % 2 R + a set D\f 2 C : j j = %g is one of three forms: an empty set, a whole circle, a curve symmetric with respect to the real axis containing %. A function f 2 A is circularly symmetric if f() is a circularly symmetric set. The class of all such functions we denote by X. The above denitions were given by Jenkins in (2). In this paper besides X we also consider some of its subclasses: X( ) and Y \S consisting of functions in X with the second coecient xed and univalent starlike functions respectively. According to the suggestion, in Abstract we add one more paragraph at the end of the section: For X( ) we nd the radii of starlikeness, starlikeness of order , univalence and local univalence. We also obtain some distortion results. For Y\S we discuss some coecient problems, among others the Fekete- Szego ineqalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信