Sachintha R. Brandigampala, Abdullah F. Al-Battal, Truong Q. Nguyen
{"title":"超声扫描中目标检测与分割的数据增强方法:实证比较研究","authors":"Sachintha R. Brandigampala, Abdullah F. Al-Battal, Truong Q. Nguyen","doi":"10.1109/CBMS55023.2022.00057","DOIUrl":null,"url":null,"abstract":"In ultrasound imaging, sonographers are tasked with analyzing scans for diagnostic purposes; a challenging task, especially for novice sonographers. Deep Learning methods have shown great potential in their ability to infer semantics and key information from scans to assist with these tasks. However, deep learning methods require large training sets to accomplish tasks such as segmentation and object detection. Generating these large datasets is a significant challenge in the medical domain due to the high cost of acquisition and annotation. Therefore, data augmentation is used to increase the size of training datasets to create the needed variability for deep learning models to generalize. These augmentation methods try to mimic differences among scans that result from noise, tissue movement, acquisition settings, and others. In this paper, we analyze the effectiveness of general augmentation methods that perform color, rigid, and non-rigid geometric transformation, to empirically analyze and compare their ability to improve the performance of three segmentation architectures on three different ultrasound datasets. We observe that non-rigid geometric transformations produce the best performance improvement.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Augmentation Methods For Object Detection and Segmentation In Ultrasound Scans: An Empirical Comparative Study\",\"authors\":\"Sachintha R. Brandigampala, Abdullah F. Al-Battal, Truong Q. Nguyen\",\"doi\":\"10.1109/CBMS55023.2022.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ultrasound imaging, sonographers are tasked with analyzing scans for diagnostic purposes; a challenging task, especially for novice sonographers. Deep Learning methods have shown great potential in their ability to infer semantics and key information from scans to assist with these tasks. However, deep learning methods require large training sets to accomplish tasks such as segmentation and object detection. Generating these large datasets is a significant challenge in the medical domain due to the high cost of acquisition and annotation. Therefore, data augmentation is used to increase the size of training datasets to create the needed variability for deep learning models to generalize. These augmentation methods try to mimic differences among scans that result from noise, tissue movement, acquisition settings, and others. In this paper, we analyze the effectiveness of general augmentation methods that perform color, rigid, and non-rigid geometric transformation, to empirically analyze and compare their ability to improve the performance of three segmentation architectures on three different ultrasound datasets. We observe that non-rigid geometric transformations produce the best performance improvement.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Augmentation Methods For Object Detection and Segmentation In Ultrasound Scans: An Empirical Comparative Study
In ultrasound imaging, sonographers are tasked with analyzing scans for diagnostic purposes; a challenging task, especially for novice sonographers. Deep Learning methods have shown great potential in their ability to infer semantics and key information from scans to assist with these tasks. However, deep learning methods require large training sets to accomplish tasks such as segmentation and object detection. Generating these large datasets is a significant challenge in the medical domain due to the high cost of acquisition and annotation. Therefore, data augmentation is used to increase the size of training datasets to create the needed variability for deep learning models to generalize. These augmentation methods try to mimic differences among scans that result from noise, tissue movement, acquisition settings, and others. In this paper, we analyze the effectiveness of general augmentation methods that perform color, rigid, and non-rigid geometric transformation, to empirically analyze and compare their ability to improve the performance of three segmentation architectures on three different ultrasound datasets. We observe that non-rigid geometric transformations produce the best performance improvement.