基于非高斯模型的鲁棒高光谱图像分割

Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini
{"title":"基于非高斯模型的鲁棒高光谱图像分割","authors":"Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini","doi":"10.1109/CIP.2010.5604242","DOIUrl":null,"url":null,"abstract":"Spectra collected by hyperspectral sensors over samples of the same material are not deterministic quantities. Their inherent spectral variability can be accounted for by making use of suitable statistical models. Within this framework, the Gaussian Mixture Model (GMM) is one of the most widely adopted models for modeling hyperspectral data. Unfortunately, the GMM has been shown not to be sufficiently adequate to represent the statistical behavior of real hyperspectral data, especially for the tails of the distributions. The class of elliptically contoured distributions, which accommodates longer tails, promises to better match the spectral distribution of hyperspectral data.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"14 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Robust hyperspectral image segmentation based on a non-Gaussian model\",\"authors\":\"Tiziana Veracini, S. Matteoli, M. Diani, G. Corsini\",\"doi\":\"10.1109/CIP.2010.5604242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectra collected by hyperspectral sensors over samples of the same material are not deterministic quantities. Their inherent spectral variability can be accounted for by making use of suitable statistical models. Within this framework, the Gaussian Mixture Model (GMM) is one of the most widely adopted models for modeling hyperspectral data. Unfortunately, the GMM has been shown not to be sufficiently adequate to represent the statistical behavior of real hyperspectral data, especially for the tails of the distributions. The class of elliptically contoured distributions, which accommodates longer tails, promises to better match the spectral distribution of hyperspectral data.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"14 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

高光谱传感器对同一材料样品采集的光谱不是确定的数量。它们固有的光谱变异性可以通过使用合适的统计模型来解释。在此框架下,高斯混合模型(Gaussian Mixture Model, GMM)是高光谱数据建模中应用最广泛的模型之一。不幸的是,GMM已被证明不足以表示实际高光谱数据的统计行为,特别是对于分布的尾部。这类椭圆轮廓分布,可以容纳更长的尾巴,有望更好地匹配高光谱数据的光谱分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust hyperspectral image segmentation based on a non-Gaussian model
Spectra collected by hyperspectral sensors over samples of the same material are not deterministic quantities. Their inherent spectral variability can be accounted for by making use of suitable statistical models. Within this framework, the Gaussian Mixture Model (GMM) is one of the most widely adopted models for modeling hyperspectral data. Unfortunately, the GMM has been shown not to be sufficiently adequate to represent the statistical behavior of real hyperspectral data, especially for the tails of the distributions. The class of elliptically contoured distributions, which accommodates longer tails, promises to better match the spectral distribution of hyperspectral data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信