PySke: Python的算法骨架

Jolan Philippe, F. Loulergue
{"title":"PySke: Python的算法骨架","authors":"Jolan Philippe, F. Loulergue","doi":"10.1109/HPCS48598.2019.9188151","DOIUrl":null,"url":null,"abstract":"PySke is a library of parallel algorithmic skeletons in Python designed for list and tree data structures. Such algorithmic skeletons are high-order functions implemented in parallel. An application developed with PySke is a composition of skeletons. To ease the write of parallel programs, PySke does not follow the Single Program Multiple Data (SPMD) paradigm but offers a global view of parallel programs to users. This approach aims at writing scalable programs easily. In addition to the library, we present experiments performed on a highperformance computing cluster (distributed memory) on a set of example applications developed with PySke.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PySke: Algorithmic Skeletons for Python\",\"authors\":\"Jolan Philippe, F. Loulergue\",\"doi\":\"10.1109/HPCS48598.2019.9188151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PySke is a library of parallel algorithmic skeletons in Python designed for list and tree data structures. Such algorithmic skeletons are high-order functions implemented in parallel. An application developed with PySke is a composition of skeletons. To ease the write of parallel programs, PySke does not follow the Single Program Multiple Data (SPMD) paradigm but offers a global view of parallel programs to users. This approach aims at writing scalable programs easily. In addition to the library, we present experiments performed on a highperformance computing cluster (distributed memory) on a set of example applications developed with PySke.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

PySke是一个Python中的并行算法框架库,专为列表和树数据结构设计。这种算法骨架是并行实现的高阶函数。用PySke开发的一个应用程序是一个骨架的组合。为了简化并行程序的编写,PySke没有遵循单程序多数据(SPMD)范式,而是向用户提供了并行程序的全局视图。这种方法旨在轻松编写可扩展的程序。除了库之外,我们还介绍了在高性能计算集群(分布式内存)上使用PySke开发的一组示例应用程序进行的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PySke: Algorithmic Skeletons for Python
PySke is a library of parallel algorithmic skeletons in Python designed for list and tree data structures. Such algorithmic skeletons are high-order functions implemented in parallel. An application developed with PySke is a composition of skeletons. To ease the write of parallel programs, PySke does not follow the Single Program Multiple Data (SPMD) paradigm but offers a global view of parallel programs to users. This approach aims at writing scalable programs easily. In addition to the library, we present experiments performed on a highperformance computing cluster (distributed memory) on a set of example applications developed with PySke.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信