N. Bezzo, R. Fierro, Ashleigh Swingler, S. Ferrari
{"title":"移动路由器网络运动规划的析取规划方法","authors":"N. Bezzo, R. Fierro, Ashleigh Swingler, S. Ferrari","doi":"10.2316/Journal.206.2011.1.206-3405","DOIUrl":null,"url":null,"abstract":"In this paper we develop a framework based on disjunctive programming for motion planning of robotic networks. Although the methodology presented in this paper can be applied to general motion planning problems we focus on coordinating a team of mobile routers to maintain connectivity between a fixed base station and a mobile user within a walled environment. This connectivity management problem is decomposed into three steps: (i) a feasible line-of-sight path between the base station and the mobile user is computed; (ii) the number of required routers and their goal locations are determined; and (iii) the motion planning with obstacle and inter-vehicle collision avoidance problem is solved. To illustrate the flexibility of the proposed approach we also formulate a novel motion planning algorithm for a team of mobile robots as a disjunctive program. Cell decomposition is used to take into account the size and orientation of the robots. In both cases, connectivity and motion planning, the mixed-integer optimization problems are solve using CPLEX. Moreover, the proposed approach can easily accommodate input and other constraints and mission objectives. Simulation results show the applicability of the proposed strategy.","PeriodicalId":206015,"journal":{"name":"Int. J. Robotics Autom.","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Disjunctive Programming Approach for Motion Planning of Mobile Router Networks\",\"authors\":\"N. Bezzo, R. Fierro, Ashleigh Swingler, S. Ferrari\",\"doi\":\"10.2316/Journal.206.2011.1.206-3405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop a framework based on disjunctive programming for motion planning of robotic networks. Although the methodology presented in this paper can be applied to general motion planning problems we focus on coordinating a team of mobile routers to maintain connectivity between a fixed base station and a mobile user within a walled environment. This connectivity management problem is decomposed into three steps: (i) a feasible line-of-sight path between the base station and the mobile user is computed; (ii) the number of required routers and their goal locations are determined; and (iii) the motion planning with obstacle and inter-vehicle collision avoidance problem is solved. To illustrate the flexibility of the proposed approach we also formulate a novel motion planning algorithm for a team of mobile robots as a disjunctive program. Cell decomposition is used to take into account the size and orientation of the robots. In both cases, connectivity and motion planning, the mixed-integer optimization problems are solve using CPLEX. Moreover, the proposed approach can easily accommodate input and other constraints and mission objectives. Simulation results show the applicability of the proposed strategy.\",\"PeriodicalId\":206015,\"journal\":{\"name\":\"Int. J. Robotics Autom.\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/Journal.206.2011.1.206-3405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/Journal.206.2011.1.206-3405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Disjunctive Programming Approach for Motion Planning of Mobile Router Networks
In this paper we develop a framework based on disjunctive programming for motion planning of robotic networks. Although the methodology presented in this paper can be applied to general motion planning problems we focus on coordinating a team of mobile routers to maintain connectivity between a fixed base station and a mobile user within a walled environment. This connectivity management problem is decomposed into three steps: (i) a feasible line-of-sight path between the base station and the mobile user is computed; (ii) the number of required routers and their goal locations are determined; and (iii) the motion planning with obstacle and inter-vehicle collision avoidance problem is solved. To illustrate the flexibility of the proposed approach we also formulate a novel motion planning algorithm for a team of mobile robots as a disjunctive program. Cell decomposition is used to take into account the size and orientation of the robots. In both cases, connectivity and motion planning, the mixed-integer optimization problems are solve using CPLEX. Moreover, the proposed approach can easily accommodate input and other constraints and mission objectives. Simulation results show the applicability of the proposed strategy.