{"title":"从总顺序到数据库复制","authors":"Y. Amir, C. Tutu","doi":"10.1109/ICDCS.2002.1022299","DOIUrl":null,"url":null,"abstract":"This paper presents in detail an efficient and provably correct algorithm for database replication over partitionable networks. Our algorithm avoids the need for end-to-end acknowledgments for each action while supporting network partitions and merges and allowing dynamic instantiation of new replicas. One round of end-to-end acknowledgments is required only upon a membership change event such as a network partition. New actions may be introduced to the system at any point, not only while in a primary component. We show how performance can be further improved for applications that allow relaxation of consistency requirements. We provide experimental results that demonstrate the efficiency of our approach.","PeriodicalId":186210,"journal":{"name":"Proceedings 22nd International Conference on Distributed Computing Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"From total order to database replication\",\"authors\":\"Y. Amir, C. Tutu\",\"doi\":\"10.1109/ICDCS.2002.1022299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents in detail an efficient and provably correct algorithm for database replication over partitionable networks. Our algorithm avoids the need for end-to-end acknowledgments for each action while supporting network partitions and merges and allowing dynamic instantiation of new replicas. One round of end-to-end acknowledgments is required only upon a membership change event such as a network partition. New actions may be introduced to the system at any point, not only while in a primary component. We show how performance can be further improved for applications that allow relaxation of consistency requirements. We provide experimental results that demonstrate the efficiency of our approach.\",\"PeriodicalId\":186210,\"journal\":{\"name\":\"Proceedings 22nd International Conference on Distributed Computing Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 22nd International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2002.1022299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 22nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2002.1022299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents in detail an efficient and provably correct algorithm for database replication over partitionable networks. Our algorithm avoids the need for end-to-end acknowledgments for each action while supporting network partitions and merges and allowing dynamic instantiation of new replicas. One round of end-to-end acknowledgments is required only upon a membership change event such as a network partition. New actions may be introduced to the system at any point, not only while in a primary component. We show how performance can be further improved for applications that allow relaxation of consistency requirements. We provide experimental results that demonstrate the efficiency of our approach.