用形式化方法自动微分并联回路

J. Hückelheim, L. Hascoët
{"title":"用形式化方法自动微分并联回路","authors":"J. Hückelheim, L. Hascoët","doi":"10.1145/3545008.3545089","DOIUrl":null,"url":null,"abstract":"This paper presents a novel combination of reverse mode automatic differentiation and formal methods, to enable efficient differentiation of (or backpropagation through) shared-memory parallel loops. Compared to the state of the art, our approach can reduce the need for atomic updates or private data copies during the parallel derivative computation, even in the presence of unstructured or data-dependent data access patterns. This is achieved by gathering information about the memory access patterns from the input program, which is assumed to be correctly parallelized. This information is then used to build a model of assertions in a theorem prover, which can be used to check the safety of shared memory accesses during the parallel derivative loops. We demonstrate this approach on scientific computing benchmarks including a lattice-Boltzmann method (LBM) solver from the Parboil benchmark suite and a Green’s function Monte Carlo (GFMC) kernel from the CORAL benchmark suite.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Differentiation of Parallel Loops with Formal Methods\",\"authors\":\"J. Hückelheim, L. Hascoët\",\"doi\":\"10.1145/3545008.3545089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel combination of reverse mode automatic differentiation and formal methods, to enable efficient differentiation of (or backpropagation through) shared-memory parallel loops. Compared to the state of the art, our approach can reduce the need for atomic updates or private data copies during the parallel derivative computation, even in the presence of unstructured or data-dependent data access patterns. This is achieved by gathering information about the memory access patterns from the input program, which is assumed to be correctly parallelized. This information is then used to build a model of assertions in a theorem prover, which can be used to check the safety of shared memory accesses during the parallel derivative loops. We demonstrate this approach on scientific computing benchmarks including a lattice-Boltzmann method (LBM) solver from the Parboil benchmark suite and a Green’s function Monte Carlo (GFMC) kernel from the CORAL benchmark suite.\",\"PeriodicalId\":360504,\"journal\":{\"name\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545008.3545089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种将反向模式自动微分与形式化方法相结合的新方法,以实现共享内存并行环路的有效微分(或通过反向传播)。与目前的技术水平相比,我们的方法可以在并行派生计算期间减少对原子更新或私有数据副本的需求,即使在存在非结构化或数据依赖的数据访问模式时也是如此。这是通过从输入程序收集有关内存访问模式的信息来实现的,这些信息被认为是正确并行化的。然后使用此信息在定理证明器中构建断言模型,该模型可用于检查并行派生循环期间共享内存访问的安全性。我们在科学计算基准测试中演示了这种方法,包括来自Parboil基准测试套件的晶格-玻尔兹曼方法(LBM)求解器和来自CORAL基准测试套件的格林函数蒙特卡罗(GFMC)内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Differentiation of Parallel Loops with Formal Methods
This paper presents a novel combination of reverse mode automatic differentiation and formal methods, to enable efficient differentiation of (or backpropagation through) shared-memory parallel loops. Compared to the state of the art, our approach can reduce the need for atomic updates or private data copies during the parallel derivative computation, even in the presence of unstructured or data-dependent data access patterns. This is achieved by gathering information about the memory access patterns from the input program, which is assumed to be correctly parallelized. This information is then used to build a model of assertions in a theorem prover, which can be used to check the safety of shared memory accesses during the parallel derivative loops. We demonstrate this approach on scientific computing benchmarks including a lattice-Boltzmann method (LBM) solver from the Parboil benchmark suite and a Green’s function Monte Carlo (GFMC) kernel from the CORAL benchmark suite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信