微阵列表达数据集的支持向量机分类

Junying Zhang, R. Lee, Y.J. Wang
{"title":"微阵列表达数据集的支持向量机分类","authors":"Junying Zhang, R. Lee, Y.J. Wang","doi":"10.1109/ICCIMA.2003.1238102","DOIUrl":null,"url":null,"abstract":"Gene selection, cancer classification and functional gene classification are three main concerns and interests by biologists for cancer detection, cancer classification, and understanding the functions of genes from the molecular level of tissues, where the large number of genes and relatively small number of experiments in gene expression data generate a great challenge. After a brief introduction of support vector machine(SVM) for classification, this paper presents recent SVM approaches for gene selection, cancer classification and functional gene classification followed by analysis on the advantages and limitations of SVM on these applications.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Support vector machine classifications for microarray expression data set\",\"authors\":\"Junying Zhang, R. Lee, Y.J. Wang\",\"doi\":\"10.1109/ICCIMA.2003.1238102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene selection, cancer classification and functional gene classification are three main concerns and interests by biologists for cancer detection, cancer classification, and understanding the functions of genes from the molecular level of tissues, where the large number of genes and relatively small number of experiments in gene expression data generate a great challenge. After a brief introduction of support vector machine(SVM) for classification, this paper presents recent SVM approaches for gene selection, cancer classification and functional gene classification followed by analysis on the advantages and limitations of SVM on these applications.\",\"PeriodicalId\":385362,\"journal\":{\"name\":\"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.2003.1238102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

基因选择、癌症分类和功能基因分类是生物学家从组织分子水平上对癌症检测、癌症分类和理解基因功能的三个主要关注点和兴趣,其中基因数量多而基因表达数据实验数量相对较少,对基因表达数据产生了很大的挑战。本文在简要介绍支持向量机分类的基础上,介绍了支持向量机在基因选择、癌症分类和功能基因分类等方面的最新应用,并分析了支持向量机在这些应用中的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support vector machine classifications for microarray expression data set
Gene selection, cancer classification and functional gene classification are three main concerns and interests by biologists for cancer detection, cancer classification, and understanding the functions of genes from the molecular level of tissues, where the large number of genes and relatively small number of experiments in gene expression data generate a great challenge. After a brief introduction of support vector machine(SVM) for classification, this paper presents recent SVM approaches for gene selection, cancer classification and functional gene classification followed by analysis on the advantages and limitations of SVM on these applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信