攻击图中关键攻击集的识别

A. Ghazo, Ratnesh Kumar
{"title":"攻击图中关键攻击集的识别","authors":"A. Ghazo, Ratnesh Kumar","doi":"10.1109/UEMCON47517.2019.8993076","DOIUrl":null,"url":null,"abstract":"SCADA/ICS (Supervisory Control and Data Acqui-sition/Industrial Control Systems) networks are becoming targets of advanced multi-faceted attacks, and use of attack-graphs has been proposed to model complex attacks scenarios that exploit interdependence among existing atomic vulnerabilities to stitch together the attack-paths that might compromise a system-level security property. While such analysis of attack scenarios enables security administrators to establish appropriate security measurements to secure the system, practical considerations on time and cost limit their ability to address all system vulnerabilities at once. In this paper, we propose an approach that identifies label-cuts to automatically identify a set of critical-attacks that, when blocked, guarantee system security. We utilize the Strongly-Connected-Components (SCCs) of the given attack graph to generate an abstracted version of the attack-graph, a tree over the SCCs, and next use an iterative backward search over this tree to identify set of backward reachable SCCs, along with their outgoing edges and their labels, to identify a cut with a minimum number of labels that forms a critical-attacks set. We also report the implementation and validation of the proposed algorithm to a real-world case study, a SCADA network for a water treatment cyber-physical system.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identification of Critical-Attacks Set in an Attack-Graph\",\"authors\":\"A. Ghazo, Ratnesh Kumar\",\"doi\":\"10.1109/UEMCON47517.2019.8993076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SCADA/ICS (Supervisory Control and Data Acqui-sition/Industrial Control Systems) networks are becoming targets of advanced multi-faceted attacks, and use of attack-graphs has been proposed to model complex attacks scenarios that exploit interdependence among existing atomic vulnerabilities to stitch together the attack-paths that might compromise a system-level security property. While such analysis of attack scenarios enables security administrators to establish appropriate security measurements to secure the system, practical considerations on time and cost limit their ability to address all system vulnerabilities at once. In this paper, we propose an approach that identifies label-cuts to automatically identify a set of critical-attacks that, when blocked, guarantee system security. We utilize the Strongly-Connected-Components (SCCs) of the given attack graph to generate an abstracted version of the attack-graph, a tree over the SCCs, and next use an iterative backward search over this tree to identify set of backward reachable SCCs, along with their outgoing edges and their labels, to identify a cut with a minimum number of labels that forms a critical-attacks set. We also report the implementation and validation of the proposed algorithm to a real-world case study, a SCADA network for a water treatment cyber-physical system.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8993076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

SCADA/ICS(监控和数据采集/工业控制系统)网络正在成为高级多方面攻击的目标,并且已经提出使用攻击图来模拟复杂的攻击场景,这些攻击场景利用现有原子漏洞之间的相互依赖性,将可能危及系统级安全属性的攻击路径拼接在一起。虽然对攻击场景的这种分析使安全管理员能够建立适当的安全度量来保护系统,但对时间和成本的实际考虑限制了他们一次解决所有系统漏洞的能力。在本文中,我们提出了一种识别标签切割的方法来自动识别一组关键攻击,当被阻止时,保证系统的安全性。我们利用给定攻击图的强连接组件(scc)来生成攻击图的抽象版本,即scc上的树,然后在该树上使用迭代向后搜索来识别一组向后可达的scc,以及它们的外向边缘和标签,以识别具有最小数量标签的切割,形成关键攻击集。我们还报告了一个现实世界的案例研究,一个用于水处理网络物理系统的SCADA网络,该算法的实施和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Critical-Attacks Set in an Attack-Graph
SCADA/ICS (Supervisory Control and Data Acqui-sition/Industrial Control Systems) networks are becoming targets of advanced multi-faceted attacks, and use of attack-graphs has been proposed to model complex attacks scenarios that exploit interdependence among existing atomic vulnerabilities to stitch together the attack-paths that might compromise a system-level security property. While such analysis of attack scenarios enables security administrators to establish appropriate security measurements to secure the system, practical considerations on time and cost limit their ability to address all system vulnerabilities at once. In this paper, we propose an approach that identifies label-cuts to automatically identify a set of critical-attacks that, when blocked, guarantee system security. We utilize the Strongly-Connected-Components (SCCs) of the given attack graph to generate an abstracted version of the attack-graph, a tree over the SCCs, and next use an iterative backward search over this tree to identify set of backward reachable SCCs, along with their outgoing edges and their labels, to identify a cut with a minimum number of labels that forms a critical-attacks set. We also report the implementation and validation of the proposed algorithm to a real-world case study, a SCADA network for a water treatment cyber-physical system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信