一种基于CPU-GPU集群的心电图计算机模拟混合并行算法

W. Shen, Lianqiang Sun, D. Wei, Weimin Xu, Hui Wang, Xin Zhu
{"title":"一种基于CPU-GPU集群的心电图计算机模拟混合并行算法","authors":"W. Shen, Lianqiang Sun, D. Wei, Weimin Xu, Hui Wang, Xin Zhu","doi":"10.1109/ICIS.2013.6607835","DOIUrl":null,"url":null,"abstract":"Biological computations like Electrocardiological modeling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of Electrocardiograms (ECGs). We realized the parallel computation for computer simulation of ECGs on a CPU-GPU cluster using a hybrid parallel algorithm with the parallel program development tools-MPI, OpenMP, and CUDA. Furthermore, we proposed a load-prediction static scheduling and load-prediction dynamic scheduling to achieve efficient process-level and thread-level scheduling, respectively. Compared with traditional static and dynamic scheduling, our scheduling schemes are more efficient. In our research, we achieved a speedup of 55.1 using four PCs for the computer simulation of ECGs. This study demonstrates that the cluster can provide a cheap and efficient environment for parallel computations in biological modeling and simulation studies.","PeriodicalId":345020,"journal":{"name":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hybrid parallel algorithm for computer simulation of Electrocardiogram based on a CPU-GPU cluster\",\"authors\":\"W. Shen, Lianqiang Sun, D. Wei, Weimin Xu, Hui Wang, Xin Zhu\",\"doi\":\"10.1109/ICIS.2013.6607835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological computations like Electrocardiological modeling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of Electrocardiograms (ECGs). We realized the parallel computation for computer simulation of ECGs on a CPU-GPU cluster using a hybrid parallel algorithm with the parallel program development tools-MPI, OpenMP, and CUDA. Furthermore, we proposed a load-prediction static scheduling and load-prediction dynamic scheduling to achieve efficient process-level and thread-level scheduling, respectively. Compared with traditional static and dynamic scheduling, our scheduling schemes are more efficient. In our research, we achieved a speedup of 55.1 using four PCs for the computer simulation of ECGs. This study demonstrates that the cluster can provide a cheap and efficient environment for parallel computations in biological modeling and simulation studies.\",\"PeriodicalId\":345020,\"journal\":{\"name\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2013.6607835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2013.6607835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物计算,如心电图建模和仿真,通常需要高性能的计算环境。本文介绍了一种用于心电图计算机模拟的并行计算实现方法。利用并行程序开发工具mpi、OpenMP和CUDA,采用混合并行算法实现了在CPU-GPU集群上计算机模拟心电图的并行计算。此外,我们提出了负载预测静态调度和负载预测动态调度,分别实现了高效的进程级和线程级调度。与传统的静态调度和动态调度相比,我们的调度方案效率更高。在我们的研究中,我们使用四台pc进行心电图的计算机模拟,实现了55.1的加速。该研究表明,集群可以为生物建模和仿真研究中的并行计算提供一个廉价而高效的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid parallel algorithm for computer simulation of Electrocardiogram based on a CPU-GPU cluster
Biological computations like Electrocardiological modeling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of Electrocardiograms (ECGs). We realized the parallel computation for computer simulation of ECGs on a CPU-GPU cluster using a hybrid parallel algorithm with the parallel program development tools-MPI, OpenMP, and CUDA. Furthermore, we proposed a load-prediction static scheduling and load-prediction dynamic scheduling to achieve efficient process-level and thread-level scheduling, respectively. Compared with traditional static and dynamic scheduling, our scheduling schemes are more efficient. In our research, we achieved a speedup of 55.1 using four PCs for the computer simulation of ECGs. This study demonstrates that the cluster can provide a cheap and efficient environment for parallel computations in biological modeling and simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信