{"title":"1978 Lempel-Ziv算法的点向冗余边界的简单技术","authors":"J. Kieffer, E. Yang","doi":"10.1109/DCC.1999.755693","DOIUrl":null,"url":null,"abstract":"If x is a string of finite length over a finite alphabet A, let LZ(x) denote the length of the binary codeword assigned to x by the 1978 version of the Lempel-Ziv data compression algorithm, let t(x) be the number of phrases in the Lempel-Ziv parsing of x, and let /spl mu/(x) be the probability assigned to x by a memoryless source model. Using a very simple technique, we probe the pointwise redundancy bound LZ(x)+log/sub 2//spl mu/(x)/spl les/8t(x)max{-log/sub 2//spl mu/(a):a/spl isin/A}.","PeriodicalId":103598,"journal":{"name":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A simple technique for bounding the pointwise redundancy of the 1978 Lempel-Ziv algorithm\",\"authors\":\"J. Kieffer, E. Yang\",\"doi\":\"10.1109/DCC.1999.755693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If x is a string of finite length over a finite alphabet A, let LZ(x) denote the length of the binary codeword assigned to x by the 1978 version of the Lempel-Ziv data compression algorithm, let t(x) be the number of phrases in the Lempel-Ziv parsing of x, and let /spl mu/(x) be the probability assigned to x by a memoryless source model. Using a very simple technique, we probe the pointwise redundancy bound LZ(x)+log/sub 2//spl mu/(x)/spl les/8t(x)max{-log/sub 2//spl mu/(a):a/spl isin/A}.\",\"PeriodicalId\":103598,\"journal\":{\"name\":\"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1999.755693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1999.755693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple technique for bounding the pointwise redundancy of the 1978 Lempel-Ziv algorithm
If x is a string of finite length over a finite alphabet A, let LZ(x) denote the length of the binary codeword assigned to x by the 1978 version of the Lempel-Ziv data compression algorithm, let t(x) be the number of phrases in the Lempel-Ziv parsing of x, and let /spl mu/(x) be the probability assigned to x by a memoryless source model. Using a very simple technique, we probe the pointwise redundancy bound LZ(x)+log/sub 2//spl mu/(x)/spl les/8t(x)max{-log/sub 2//spl mu/(a):a/spl isin/A}.