S. Ravikumar, L. Wisse, Yang Gao, G. Gerig, Paul Yushkevich
{"title":"使用轮廓和强度引导插值促进3D数据集的手动分割","authors":"S. Ravikumar, L. Wisse, Yang Gao, G. Gerig, Paul Yushkevich","doi":"10.1109/ISBI.2019.8759500","DOIUrl":null,"url":null,"abstract":"Manual segmentation of anatomical structures in 3D imaging datasets is a highly time-consuming process. This process can be sped up using interslice interpolation techniques, which require only a small subset of slices to be manually segmented. In this paper, we propose a two-step interpolation approach that utilizes a “binary weighted averaging” algorithm to interpolate contour information, and the random forest framework to perform intensity-based label classification. We present the results of experiments performed in the context of hippocampal segmentations in ex vivo MRI scans. Compared to the random walker algorithm and morphology-based interpolation, the proposed method produces more accurate segmentations and smoother 3D reconstructions.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Facilitating Manual Segmentation of 3D Datasets Using Contour And Intensity Guided Interpolation\",\"authors\":\"S. Ravikumar, L. Wisse, Yang Gao, G. Gerig, Paul Yushkevich\",\"doi\":\"10.1109/ISBI.2019.8759500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual segmentation of anatomical structures in 3D imaging datasets is a highly time-consuming process. This process can be sped up using interslice interpolation techniques, which require only a small subset of slices to be manually segmented. In this paper, we propose a two-step interpolation approach that utilizes a “binary weighted averaging” algorithm to interpolate contour information, and the random forest framework to perform intensity-based label classification. We present the results of experiments performed in the context of hippocampal segmentations in ex vivo MRI scans. Compared to the random walker algorithm and morphology-based interpolation, the proposed method produces more accurate segmentations and smoother 3D reconstructions.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facilitating Manual Segmentation of 3D Datasets Using Contour And Intensity Guided Interpolation
Manual segmentation of anatomical structures in 3D imaging datasets is a highly time-consuming process. This process can be sped up using interslice interpolation techniques, which require only a small subset of slices to be manually segmented. In this paper, we propose a two-step interpolation approach that utilizes a “binary weighted averaging” algorithm to interpolate contour information, and the random forest framework to perform intensity-based label classification. We present the results of experiments performed in the context of hippocampal segmentations in ex vivo MRI scans. Compared to the random walker algorithm and morphology-based interpolation, the proposed method produces more accurate segmentations and smoother 3D reconstructions.